首页> 外文期刊>Information Theory, IEEE Transactions on >Cramér–Rao Lower Bounds of RSS-Based Localization With Anchor Position Uncertainty
【24h】

Cramér–Rao Lower Bounds of RSS-Based Localization With Anchor Position Uncertainty

机译:基于RSS的Cramér–Rao下界,锚点位置不确定

获取原文
获取原文并翻译 | 示例

摘要

The location awareness is useful in many wireless networking solutions, such as cellular, , self-organizing, cognitive radio networks, and so on. The RSS-based, non-Bayesian source localization is of particular interest, due to the presence of the RSS measurements in all radio devices, as well as the instantaneous estimations without extensive training and learning phases. However, most RSS-based localization algorithms usually neglect problems arising from inherent network topology uncertainty. The positions of some measuring anchors, usually assumed to be precisely known in advance, are often a subject of previous estimation, which propagates errors in the source localization procedure and results in performance degradation. A joint localization framework, termed source position estimation for anchor position uncertainty reduction (SPEAR), has been recently proposed as a possible solution to the problem of RSS-based localization in the presence of network topology uncertainty. The framework simultaneously estimates the positions of the sources and the uncertain anchors and serves as robust tool that provides improved source localization performance and more reliable anchor position estimates. This paper focuses on the theoretical assessment of SPEAR’s performance by deriving its fundamental lower bounds using the Cramér–Rao information inequality. The main contribution of this paper is the detailed information-theoretic interpretation of the obtained results. The interpretation provides valuable insight into the essence of the SPEAR localization problem because it identifies different position information components in the observed data, discovers how they are mutually related, and determines how they contribute toward the resulting position information. This paper also provides geometric interpretation of the obtained results and illustrates the principles of distribution of position information in space. The theore- ical results as well as their information-theoretic and geometric interpretations can be used as a benchmark for RSS-based location-aware systems that operate in the presence of network topology uncertainty.
机译:位置感知在许多无线网络解决方案中很有用,例如蜂窝,自组织,认知无线电网络等。由于所有无线电设备中都存在RSS测量以及无需大量培训和学习阶段的即时估计,基于RSS的非贝叶斯源定位特别受关注。但是,大多数基于RSS的定位算法通常会忽略由于固有的网络拓扑不确定性而引起的问题。通常假定事先精确知道的一些测量锚的位置通常是先前估计的主题,这会在源定位过程中传播错误并导致性能下降。最近,提出了一种联合定位框架,称为用于锚位置不确定性降低的源位置估计(SPEAR),作为在存在网络拓扑不确定性的情况下基于RSS的定位问题的可能解决方案。该框架可同时估算震源和不确定锚点的位置,并且可作为强大的工具来提供改进的震源定位性能和更可靠的锚点位置估计。本文通过使用Cramér-Rao信息不等式推导SPEAR的基本下限,着重于对SPEAR性能的理论评估。本文的主要贡献是对所得结果的详细信息理论解释。该解释为SPEAR定位问题的本质提供了宝贵的见解,因为它可以识别观察到的数据中的不同位置信息成分,发现它们之间的相互关系,并确定它们如何对最终的位置信息做出贡献。本文还对获得的结果进行了几何解释,并说明了空间中位置信息的分布原理。理论结果以及其信息理论和几何解释都可以用作基于RSS的位置感知系统的基准,该系统在存在网络拓扑不确定性的情况下运行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号