首页> 外文期刊>Information Theory, IEEE Transactions on >MLE’s Bias Pathology, Model Updated MLE, and Wallace’s Minimum Message Length Method
【24h】

MLE’s Bias Pathology, Model Updated MLE, and Wallace’s Minimum Message Length Method

机译:MLE的偏向病理学,模型更新的MLE和华莱士的最小邮件长度方法

获取原文
获取原文并翻译 | 示例

摘要

The inherent bias pathology of the maximum likelihood estimation method is confirmed for models with unknown parameters θ and ψ when maximum likelihood estimate (MLE) ψ̂ is function of MLE θ̂. To reduce ψ̂'s bias the likelihood equation to be solved for ψ is updated using the model for the data Y in it. For various models with ψ a shape parameter model updated (MU) MLE, ψ̂, reduces ψ̂'s bias. For the Pareto model ψ̂ reduces in addition ψ̂'s variance. The results explain the difference that puzzled Fisher, between biased ψ̂ and the unbiased estimate he obtained for two models with the abandoned two-stage procedure used in MUMLE's implementation. ψ̂ is also obtained with the minimum message length method thus motivating the use of priors in frequentist inference.
机译:当最大似然估计(MLE)ψ̂是MLE θ̂的函数时,对于参数θ和ψ未知的模型,可以确定最大似然估计方法的固有偏差病理。为了减少ψs的偏差,使用其中的数据Y模型更新ψ拟求解的似然方程。对于具有ψ的各种模型,形状参数模型更新(MU)MLE ψ̂减小了ψ̂的偏差。对于帕累托模型,̂ in会进一步减少̂ s的方差。结果解释了费舍尔的困惑,̂ψ和他对两个模型获得的无偏估计之间的区别,其中两个模型在MUMLE的实现中被遗弃了。 ψ̂也是用最小消息长度方法获得的,从而促使人们在先验推理中使用先验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号