首页> 外文期刊>Information Theory, IEEE Transactions on >The Optimal Noise-Adding Mechanism in Differential Privacy
【24h】

The Optimal Noise-Adding Mechanism in Differential Privacy

机译:差异隐私中的最佳噪声添加机制

获取原文
获取原文并翻译 | 示例

摘要

Differential privacy is a framework to quantify to what extent individual privacy in a statistical database is preserved while releasing useful aggregate information about the database. In this paper, within the classes of mechanisms oblivious of the database and the queries beyond the global sensitivity, we characterize the fundamental tradeoff between privacy and utility in differential privacy, and derive the optimal -differentially private mechanism for a single real-valued query function under a very general utility-maximization (or cost-minimization) framework. The class of noise probability distributions in the optimal mechanism has staircase-shaped probability density functions which are symmetric (around the origin), monotonically decreasing and geometrically decaying. The staircase mechanism can be viewed as a geometric mixture of uniform probability distributions, providing a simple algorithmic description for the mechanism. Furthermore, the staircase mechanism naturally generalizes to discrete query output settings as well as more abstract settings. We explicitly derive the parameter of the optimal staircase mechanism for and cost functions. Comparing the optimal performances with those of the usual Laplacian mechanism, we show that in the high privacy regime ( is small), the Laplacian mechanism is asymptotically optimal as ; in the low privacy regime ( is large), the minimum magnitude and second moment of noise are and as , respectively, while the corresponding figures when using the Laplacian mechanism are and , where is the sensitivity of the query function. We conclude that the gains of the staircase mechanism are more pronounced in the moderate-low privacy regime.
机译:差异隐私是一种框架,用于量化统计数据库中的个人隐私在发布有关数据库的有用汇总信息时所保留的程度。在本文中,在不考虑数据库的机制和全局敏感度之外的查询的类别中,我们描述了隐私与效用在差分隐私中的基本权衡,并推导了单个实值查询函数的最优差分专有机制。在非常通用的效用最大化(或成本最小化)框架下。最佳机制中的一类噪声概率分布具有阶梯形的概率密度函数,这些函数是对称的(围绕原点),单调递减和几何衰减。阶梯机构可以看作是均匀概率分布的几何混合,为该机构提供了简单的算法描述。此外,阶梯式机制自然可以推广到离散查询输出设置以及更多抽象设置。我们明确推导了用于和成本函数的最优阶梯机制的参数。将最佳性能与通常的拉普拉斯机制进行比较,我们发现在高隐私体制(较小)下,拉普拉斯机制在以下方面是渐近最优的:在低隐私权制度(较大)中,噪声的最小震级和第二矩分别为和,而使用拉普拉斯机制时的对应数字为和,其中查询函数的敏感性。我们得出结论,在中等偏低的隐私制度下,阶梯机制的收益更为明显。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号