首页> 外文期刊>IEEE Transactions on Information Theory >The Repair Problem for Reed–Solomon Codes: Optimal Repair of Single and Multiple Erasures With Almost Optimal Node Size
【24h】

The Repair Problem for Reed–Solomon Codes: Optimal Repair of Single and Multiple Erasures With Almost Optimal Node Size

机译:Reed-Solomon代码的修复问题:单一和多个擦除的最佳修复,几乎最佳节点大小

获取原文
获取原文并翻译 | 示例

摘要

The repair problem in distributed storage addresses recovery of the data encoded using an erasure code, for instance, a Reed-Solomon (RS) code. We consider the problem of repairing a single node or multiple nodes in RS-coded storage systems using the smallest possible amount of inter-nodal communication. According to the cut-set bound, communication cost of repairing h >= 1 failed nodes for an (n, k = n-r) maximum distance separable (MDS) code using d helper nodes is at least dhl/(d + h-k), where l is the size of the node. Guruswami and Wootters (2016) initiated the study of efficient repair of RS codes, showing that they can be repaired using a smaller bandwidth than under the trivial approach. At the same time, their work as well as follow-up papers stopped short of constructing RS codes (or any scalar MDS codes) that meet the cut-set bound with equality. In this paper, we construct the families of RS codes that achieve the cut-set bound for repair of one or several nodes. In the single-node case, we present the RS codes of length n over the field F-ql, l = exp((1 + o(1)) n log n) that meet the cut-set bound. We also prove an almost matching lower bound on l, showing that super-exponential scaling is both necessary and sufficient for scalar MDS codes to achieve the cut-set bound using linear repair schemes. For the case of multiple nodes, we construct a family of RS codes that achieve the cut-set bound universally for the repair of any h = 1, 2, . . . , r failed nodes from any subset of d helper nodes, k <= d <= n-h. For a fixed number of parities r, the node size of the constructed codes is close to the smallest possible node size for codes with such properties.
机译:分布式存储中的修复问题地址使用擦除代码进行编码的数据恢复,例如Reed-Solomon(RS)代码。我们考虑使用最小的节点间通信量在RS编码存储系统中修复单个节点或多个节点的问题。根据剪切绑定,修复H> = 1的通信成本= 1(n,k = nr)最大距离可分离(MDS)代码的1个失败节点使用d辅助节点至少是DHL /(D + HK),其中l是节点的大小。 Guruswami和Wootters(2016)启动了高效修复RS代码的研究,表明它们可以使用较小的带宽进行修复,而不是在微不足道的方法下。与此同时,他们的工作以及后续文件停止了构建符合相等绑定的剪切绑定的RS代码(或任何标量MDS代码)。在本文中,我们构建了RS代码的家庭,实现了维修一个或多个节点的剪切绑定的裁缝。在单节点案例中,我们介绍了在字段F-QL上的长度n的RS代码,l = exp((1 + o(1))n log n),符合剪切绑定。我们还证明了L上的几乎匹配的L下限,表明超级指数缩放都是必要的,并且对于标量MDS代码,以实现使用线性修复方案实现剪切绑定。对于多个节点的情况,我们构建一个RS代码的系列,该族代码可以普遍地实现剪切绑定,以修复任何H = 1,2,。 。 。 ,来自D辅助节点的任何子集的R失败节点,k <= d <= n-h。对于固定数量的定位R,构造代码的节点大小接近具有此类属性的代码的最小可能的节点大小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号