首页> 外文期刊>IEEE Transactions on Information Theory >Low Rank Parity Check Codes: New Decoding Algorithms and Applications to Cryptography
【24h】

Low Rank Parity Check Codes: New Decoding Algorithms and Applications to Cryptography

机译:低秩奇偶校验码:新的解码算法及其在密码学中的应用

获取原文
获取原文并翻译 | 示例

摘要

We introduce a new family of rank metric codes: Low Rank Parity Check codes (LRPC), for which we propose an efficient probabilistic decoding algorithm. This family of codes can be seen as the equivalent of classical LDPC codes for the rank metric. We then use these codes to design cryptosystems A la McEliece: more precisely we propose two schemes for key encapsulation mechanism (KEM) and public key encryption (PKE). Unlike rank metric codes used in previous encryption algorithms-notably Gabidulin codes - LRPC codes have a very weak algebraic structure. Our cryptosystems can be seen as an equivalent of the NTRU cryptosystem (and also to the more recent MDPC code-based cryptosystem) in a rank metric context, due to the similar form of the public keys. The present paper is an extended version of the article introducing LRPC codes, with important new contributions. We have improved the decoder thanks to a new approach which allows for decoding of errors of higher rank weight, namely up to 2/3 (n - k) when the previous decoding algorithm only decodes up to n - k/2 errors. Our codes therefore outperform the classical Gabidulin code decoder which deals with weights up to n - k/2. This comes at the expense of probabilistic decoding, but the decoding error probability can be made arbitrarily small. The new approach can also be used to decrease the decoding error probability of previous schemes, which is especially useful for cryptography. Finally, we introduce ideal rank codes, which generalize double-circulant rank codes and allow us to avoid known structural attacks based on folding. To conclude, we propose different parameter sizes for our schemes and we obtain a public key of 3337 bits for key exchange and 5893 bits for public key encryption, both for 128 bits of security.
机译:我们介绍了一个新的等级度量代码系列:低等级奇偶校验码(LRPC),为此我们提出了一种有效的概率解码算法。该系列代码可以看作是秩度量的经典LDPC代码的等效项。然后,我们使用这些代码设计密码系统A la McEliece:更准确地说,我们为密钥封装机制(KEM)和公共密钥加密(PKE)提出了两种方案。与以前的加密算法中使用的秩度量代码(尤其是Gabidulin码)不同,LRPC代码的代数结构非常弱。由于公钥的形式相似,在等级度量上下文中,我们的密码系统可以被视为等同于NTRU密码系统(以及最新的基于MDPC代码的密码系统)。本文是介绍LRPC代码的文章的扩展版本,具有重要的新贡献。由于采用了一种新方法,我们改进了解码器,该方法允许对较高秩权重的错误进行解码,即,当以前的解码算法仅解码多达n-k / 2个错误时,解码错误最多可达2/3(n-k)。因此,我们的代码优于传统的Gabidulin代码解码器,后者处理权重高达n-k / 2。这是以概率解码为代价的,但是解码错误概率可以任意地变小。该新方法还可用于降低先前方案的解码错误概率,这对于密码学尤其有用。最后,我们介绍了理想的等级码,该等级码泛化了双循环等级码,并使我们能够避免基于折叠的已知结构攻击。总而言之,我们为方案提出了不同的参数大小,并获得了3337位用于密钥交换的公钥和5893位用于公共密钥加密的公钥,两者均具有128位的安全性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号