首页> 外文期刊>IEEE Transactions on Information Theory >Communication Cost for Updating Linear Functions When Message Updates are Sparse: Connections to Maximally Recoverable Codes
【24h】

Communication Cost for Updating Linear Functions When Message Updates are Sparse: Connections to Maximally Recoverable Codes

机译:稀疏更新消息更新时更新线性函数的通信成本:与最大可恢复代码的连接

获取原文
获取原文并翻译 | 示例

摘要

We consider a communication problem in which an update of the source message needs to be conveyed to one or more distant receivers that are interested in maintaining specific linear functions of the source message. The setting is one in which the updates are sparse in nature, and where neither the source nor the receiver(s) is aware of the exact difference vector, but only know the amount of sparsity that is present in the difference vector. Under this setting, we are interested in devising linear encoding and decoding schemes that minimize the communication cost involved. We show that the optimal solution to this problem is closely related to the notion of maximally recoverable codes (MRCs), which were originally introduced in the context of coding for storage systems. In the context of storage, MRCs guarantee optimal erasure protection when the system is partially constrained to have local parity relations among the storage nodes. In our problem, we show that optimal solutions exist if and only if MRCs of certain kind (identified by the desired linear functions) exist. We consider point-to-point and broadcast versions of the problem and identify connections to MRCs under both these settings. For the point-to-point setting, we show that our linear-encoder-based achievable scheme is optimal even when non-linear encoding is permitted. The theory is illustrated in the context of updating erasure coded storage nodes. We present examples based on modern storage codes, such as the minimum bandwidth regenerating codes.
机译:我们考虑一种通信问题,其中需要将源消息的更新传达给一个或多个对保持源消息的特定线性函数感兴趣的远距离接收者。该设置是这样一种设置,其中更新本质上是稀疏的,并且源和接收者都不知道确切的差向量,而仅知道差向量中存在的稀疏量。在这种情况下,我们对设计线性编码和解码方案以最小化所涉及的通信成本感兴趣。我们表明,此问题的最佳解决方案与最大可恢复代码(MRC)的概念紧密相关,后者最初是在存储系统编码的上下文中引入的。在存储环境中,当系统部分受限于存储节点之间具有本地奇偶校验关系时,MRC可确保最佳的擦除保护。在我们的问题中,我们表明,当且仅当存在某种类型的MRC(由所需的线性函数标识)时,存在最优解。我们考虑问题的点对点和广播版本,并在这两种设置下确定与MRC的连接。对于点对点设置,我们表明即使允许非线性编码,基于线性编码器的可实现方案也是最佳的。在更新擦除编码存储节点的上下文中说明了该理论。我们介绍基于现代存储代码的示例,例如最小带宽重新生成代码。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号