首页> 外文期刊>Information Technology in Biomedicine, IEEE Transactions on >Prediction of High-Risk Asymptomatic Carotid Plaques Based on Ultrasonic Image Features
【24h】

Prediction of High-Risk Asymptomatic Carotid Plaques Based on Ultrasonic Image Features

机译:基于超声图像特征的高危无症状颈动脉斑块预测

获取原文
获取原文并翻译 | 示例

摘要

Carotid plaques have been associated with ipsilateral neurological symptoms. High-resolution ultrasound can provide information not only on the degree of carotid artery stenosis but also on the characteristics of the arterial wall including the size and consistency of atherosclerotic plaques. The aim of this study is to determine whether the addition of ultrasonic plaque texture features to clinical features in patients with asymptomatic internal carotid artery stenosis (ACS) improves the ability to identify plaques that will produce stroke. 1121 patients with ACS have been scanned with ultrasound and followed for a mean of 4 years. It is shown that the combination of texture features based on second-order statistics spatial gray level dependence matrices (SGLDM) and clinical factors improves stroke prediction (by correctly predicting 89 out of the 108 cases that were symptomatic). Here, the best classification results of $77 pm 1.8%$ were obtained from the use of the SGLDM texture features with support vector machine classifiers. The combination of morphological features with clinical features gave slightly worse classification results of $76 pm 2.6%$ . These findings need to be further validated in additional prospective studies.
机译:颈动脉斑块与同侧神经系统症状有关。高分辨率超声不仅可以提供关于颈动脉狭窄程度的信息,还可以提供关于动脉壁特征的信息,包括动脉粥样硬化斑块的大小和一致性。这项研究的目的是确定在无症状颈内动脉狭窄(ACS)患者的临床特征中增加超声斑块纹理特征是否会提高识别会引起中风的斑块的能力。已对1121例ACS患者进行了超声扫描,平均随访4年。结果表明,基于二阶统计空间灰度依赖矩阵(SGLDM)和临床因素的纹理特征组合可改善卒中预测(通过正确预测108例有症状的病例中的89例)。此处,通过将SGLDM纹理特征与支持向量机分类器结合使用,可获得$ 77 pm 1.8%$的最佳分类结果。形态特征与临床特征的结合给出了稍差的分类结果,为$ 76 pm 2.6%$。这些发现需要在其他前瞻性研究中进一步验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号