首页> 外文期刊>IEEE transactions on information forensics and security >Dissimilarity Gaussian Mixture Models for Efficient Offline Handwritten Text-Independent Identification Using SIFT and RootSIFT Descriptors
【24h】

Dissimilarity Gaussian Mixture Models for Efficient Offline Handwritten Text-Independent Identification Using SIFT and RootSIFT Descriptors

机译:使用SIFT和RootSIFT描述符进行高效脱机手写文本独立识别的相异高斯混合模型

获取原文
获取原文并翻译 | 示例

摘要

Handwriting biometrics is the science of identifying the behavioral aspect of an individual's writing style and exploiting it to develop automated writer identification and verification systems. This paper presents an efficient handwriting identification system which combines scale-invariant feature transform (SIFT) and RootSIFT descriptors in a set of Gaussian mixture models (GMMs). In particular, a new concept of similarity and dissimilarity Gaussian mixture models (SGMM and DGMM) is introduced. While an SGMM is constructed for every writer to describe the intra-class similarity that is exhibited between the handwritten texts of the same writer, a DGMM represents the contrast or dissimilarity that exists between the writer's style on one hand and other different handwriting styles on the other hand. Furthermore, because the handwritten text is described by a number of key point descriptors where each descriptor generates an SGMM/DGMM score, a new weighted histogram method is proposed to derive the intermediate prediction score for each writer's GMM. The idea of weighted histogram exploits the fact that handwritings from the same writer should exhibit more similar textual patterns than dissimilar ones, hence, by penalizing the bad scores with a cost function, the identification rate can be significantly enhanced. Our proposed system has been extensively assessed using six different public datasets (including three English, two Arabic, and one hybrid language), and the results have shown the superiority of the proposed system over the state-of-the-art techniques.
机译:手写生物识别技术是一门识别个人写作风格的行​​为方面,并利用其开发自动作者识别和验证系统的科学。本文提出了一种有效的手写识别系统,该系统在一组高斯混合模型(GMM)中结合了尺度不变特征变换(SIFT)和RootSIFT描述符。特别地,引入了相似性和非相似性高斯混合模型(SGMM和DGMM)的新概念。为每个作者构造一个SGMM来描述同一作者的手写文本之间表现出的类内相似性,而DGMM则代表一方面作者的风格与另一位作者的不同手写风格之间存在的对比或不相似。另一方面。此外,由于手写文本由多个关键点描述符描述,其中每个描述符生成一个SGMM / DGMM分数,因此提出了一种新的加权直方图方法,以得出每个作者的GMM的中间预测分数。加权直方图的思想利用了这样一个事实,即来自同一作者的笔迹应显示出比不相似的笔迹更多的相似文本模式,因此,通过用成本函数惩罚不良分数,可以大大提高识别率。我们使用六个不同的公共数据集(包括三种英语,两种阿拉伯语和一种混合语言)对我们提出的系统进行了广泛的评估,结果表明,提出的系统优于最新技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号