首页> 外文期刊>Information Forensics and Security, IEEE Transactions on >A Hybrid Approach for Generating Secure and Discriminating Face Template
【24h】

A Hybrid Approach for Generating Secure and Discriminating Face Template

机译:生成安全且可区分的人脸模板的混合方法

获取原文
获取原文并翻译 | 示例

摘要

Biometric template protection is one of the most important issues in deploying a practical biometric system. To tackle this problem, many algorithms, that do not store the template in its original form, have been reported in recent years. They can be categorized into two approaches, namely biometric cryptosystem and transform-based. However, most (if not all) algorithms in both approaches offer a trade-off between the template security and matching performance. Moreover, we believe that no single template protection method is capable of satisfying the security and performance simultaneously. In this paper, we propose a hybrid approach which takes advantage of both the biometric cryptosystem approach and the transform-based approach. A three-step hybrid algorithm is designed and developed based on random projection, discriminability-preserving (DP) transform, and fuzzy commitment scheme. The proposed algorithm not only provides good security, but also enhances the performance through the DP transform. Three publicly available face databases, namely FERET, CMU-PIE, and FRGC, are used for evaluation. The security strength of the binary templates generated from FERET, CMU-PIE, and FRGC databases are 206.3, 203.5, and 347.3 bits, respectively. Moreover, noninvertibility analysis and discussion on data leakage of the proposed hybrid algorithm are also reported. Experimental results show that, using Fisherface to construct the input facial feature vector (face template), the proposed hybrid method can improve the recognition accuracy by 4%, 11%, and 15% on the FERET, CMU-PIE, and FRGC databases, respectively. A comparison with the recently developed random multispace quantization biohashing algorithm is also reported.
机译:生物特征模板保护是部署实际生物特征系统中最重要的问题之一。为了解决这个问题,近年来已经报道了许多不以原始形式存储模板的算法。它们可以分为两种方法,即生物特征密码系统和基于变换的方法。但是,两种方法中的大多数(如果不是全部)算法都在模板安全性和匹配性能之间进行权衡。而且,我们认为没有一种模板保护方法能够同时满足安全性和性能要求。在本文中,我们提出了一种混合方法,该方法同时利用了生物特征密码系统方法和基于变换的方法。基于随机投影,可区分性保留(DP)变换和模糊承诺方案设计并开发了一种三步混合算法。所提出的算法不仅提供了良好的安全性,而且还通过DP变换提高了性能。评价使用了三个可公开获得的人脸数据库,即FERET,CMU-PIE和FRGC。从FERET,CMU-PIE和FRGC数据库生成的二进制模板的安全强度分别为206.3、203.5和347.3位。此外,还报道了不可逆性分析和提出的混合算法的数据泄漏的讨论。实验结果表明,采用Fisherface构造输入的人脸特征向量(人脸模板),该混合方法可以在FERET,CMU-PIE和FRGC数据库上将识别准确率提高4%,11%和15%,分别。还报告了与最近开发的随机多空间量化生物哈希算法的比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号