首页> 外文期刊>Information Forensics and Security, IEEE Transactions on >Authorized and Rogue Device Discrimination Using Dimensionally Reduced RF-DNA Fingerprints
【24h】

Authorized and Rogue Device Discrimination Using Dimensionally Reduced RF-DNA Fingerprints

机译:使用降维的RF-DNA指纹进行授权和欺诈的设备区分

获取原文
获取原文并翻译 | 示例

摘要

Unauthorized network access and spoofing attacks at wireless access points (WAPs) have been traditionally addressed using bit-centric security measures and remain a major information technology security concern. This has been recently addressed using RF fingerprinting methods within the physical layer to augment WAP security. This paper extends the RF fingerprinting knowledge base by: 1) identifying and removing less-relevant features through dimensional reduction analysis (DRA) and 2) providing a first look assessment of device identification (ID) verification that enables the detection of rogue devices attempting to gain network access by presenting false bit-level credentials of authorized devices. DRA benefits and rogue device rejection performance are demonstrated using discrete Gabor transform features extracted from experimentally collected orthogonal frequency division multiplexing-based wireless fidelity (WiFi) and worldwide interoperability for microwave access (WiMAX) signals. Relative to empirically selected full-dimensional feature sets, performance using DRA-reduced feature sets containing only 10% of the highest ranked features (90% reduction), includes: 1) maintaining desired device classification accuracy and 2) improving authorized device ID verification for both WiFi and WiMAX signals. Reliable burst-by-burst rogue device rejection of better than 93% is achieved for 72 unique spoofing attacks and improvement to 100% is demonstrated when an accurate sample of the overall device population is employed. DRA-reduced feature set efficiency is reflected in DRA models requiring only one-tenth the number of features and processing time.
机译:传统上,使用以比特为中心的安全措施来解决无线访问点(WAP)上的未经授权的网络访问和欺骗攻击,并且仍然是主要的信息技术安全问题。最近已经在物理层内使用RF指纹识别方法来解决此问题,以增强WAP安全性。本文通过以下方式扩展了RF指纹识别的知识库:1)通过降维分析(DRA)识别和删除不太相关的特征,以及2)对设备标识(ID)验证进行初看评估,从而能够检测出企图进行欺诈的流氓设备。通过提供授权设备的错误位级别凭据来获得网络访问权限。使用从实验收集的基于正交频分复用的无线保真度(WiFi)和微波访问(WiMAX)信号的全球互操作性中提取的离散Gabor变换特征,可以证明DRA的优势和流氓设备的拒绝性能。相对于根据经验选择的全尺寸特征集,使用仅包含10%最高排名特征(减少90%)的DRA缩减特征集的性能包括:1)保持所需的设备分类准确性和2)改进授权的设备ID验证WiFi和WiMAX信号。对于72次独特的欺骗攻击,可实现超过93%的可靠的逐个突发流氓设备拒绝,当使用整个设备总体的准确样本时,可以证明达到100%的改进。 DRA模型中反映了DRA降低的功能集效率,该功能仅需要特征数量和处理时间的十分之一。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号