首页> 外文期刊>Information Forensics and Security, IEEE Transactions on >Robust Scheme for Iris Presentation Attack Detection Using Multiscale Binarized Statistical Image Features
【24h】

Robust Scheme for Iris Presentation Attack Detection Using Multiscale Binarized Statistical Image Features

机译:基于多尺度二值化统计图像特征的虹膜表示攻击检测的鲁棒方案

获取原文
获取原文并翻译 | 示例

摘要

Vulnerability of iris recognition systems remains a challenge due to diverse presentation attacks that fail to assure the reliability when adopting these systems in real-life scenarios. In this paper, we present an in-depth analysis of presentation attacks on iris recognition systems especially focusing on the photo print attacks and the electronic display (or screen) attack. To this extent, we introduce a new relatively large scale visible spectrum iris artefact database comprised of 3300 iris normal and artefact samples that are captured by simulating five different attacks on iris recognition system. We also propose a novel presentation attack detection (PAD) scheme based on multiscale binarized statistical image features and linear support vector machines. Extensive experiments are carried out on four different publicly available iris artefact databases that have revealed the outstanding performance of the proposed PAD scheme when benchmarked with various well-established state-of-the-art schemes.
机译:虹膜识别系统的脆弱性仍然是一个挑战,因为各种各样的呈现攻击无法确保在现实情况下采用这些系统时的可靠性。在本文中,我们对虹膜识别系统的呈现攻击进行了深入分析,尤其是针对照片打印攻击和电子显示(或屏幕)攻击。在此程度上,我们引入了一个新的相对较大的可见光谱虹膜伪像数据库,该数据库由3300个虹膜正常和伪影样本组成,这些样本通过模拟对虹膜识别系统的五种不同攻击来捕获。我们还提出了一种基于多尺度二值化统计图像特征和线性支持向量机的新颖的表示攻击检测(PAD)方案。在四个不同的可公开获得的虹膜伪像数据库上进行了广泛的实验,这些数据库揭示了以各种公认的最新方案为基准的拟议PAD方案的出色性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号