首页> 外文期刊>IEEE transactions on information forensics and security >Toward Efficient Multi-Keyword Fuzzy Search Over Encrypted Outsourced Data With Accuracy Improvement
【24h】

Toward Efficient Multi-Keyword Fuzzy Search Over Encrypted Outsourced Data With Accuracy Improvement

机译:在加密外包数据上实现高效多关键字模糊搜索,并提高准确性

获取原文
获取原文并翻译 | 示例

摘要

Keyword-based search over encrypted outsourced data has become an important tool in the current cloud computing scenario. The majority of the existing techniques are focusing on multi-keyword exact match or single keyword fuzzy search. However, those existing techniques find less practical significance in real-world applications compared with the multi-keyword fuzzy search technique over encrypted data. The first attempt to construct such a multi-keyword fuzzy search scheme was reported by Wang et al., who used locality-sensitive hashing functions and Bloom filtering to meet the goal of multi-keyword fuzzy search. Nevertheless, Wang's scheme was only effective for a one letter mistake in keyword but was not effective for other common spelling mistakes. Moreover, Wang's scheme was vulnerable to server out-of-order problems during the ranking process and did not consider the keyword weight. In this paper, based on Wang et al.'s scheme, we propose an efficient multi-keyword fuzzy ranked search scheme based on Wang et al.'s scheme that is able to address the aforementioned problems. First, we develop a new method of keyword transformation based on the uni-gram, which will simultaneously improve the accuracy and creates the ability to handle other spelling mistakes. In addition, keywords with the same root can be queried using the stemming algorithm. Furthermore, we consider the keyword weight when selecting an adequate matching file set. Experiments using real-world data show that our scheme is practically efficient and achieve high accuracy.
机译:在加密的外包数据上基于关键字的搜索已成为当前云计算方案中的重要工具。现有的大多数技术都集中在多关键字精确匹配或单关键字模糊搜索上。但是,与在加密数据上的多关键字模糊搜索技术相比,那些现有技术在实际应用中发现的实用意义较小。 Wang等人首次报道了构建这种多关键字模糊搜索方案的尝试,他使用了局部敏感的哈希函数和Bloom滤波来满足多关键字模糊搜索的目标。尽管如此,Wang的方案仅对关键字中的一个字母错误有效,而对其他常见的拼写错误无效。而且,Wang的方案在排名过程中容易受到服务器故障的困扰,并且没有考虑关键字权重。在本文中,基于Wang等人的方案,我们提出了一种基于Wang等人方案的有效多关键字模糊排名搜索方案,能够解决上述问题。首先,我们开发了一种基于uni-gram的关键字转换新方法,该方法可以同时提高准确性,并具有处理其他拼写错误的能力。另外,可以使用词干提取算法查询具有相同根的关键字。此外,我们在选择适当的匹配文件集时会考虑关键字权重。使用实际数据进行的实验表明,我们的方案实际上是有效的,并且可以实现高精度。

著录项

  • 来源
  • 作者单位

    School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing, China;

    School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing, China;

    Department of Computer Science and Engineering, The State University of New York at Buffalo, Buffalo, NY, USA;

    School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing, China;

    Department of Computer Science and Engineering, The State University of New York at Buffalo, Buffalo, NY, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Cryptography; Servers; Indexes; Cats; Search problems; Data models;

    机译:密码学;服务器;索引;猫;搜索问题;数据模型;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号