首页> 外文期刊>IEEE transactions on information forensics and security >I Know What You Saw Last Minute—Encrypted HTTP Adaptive Video Streaming Title Classification
【24h】

I Know What You Saw Last Minute—Encrypted HTTP Adaptive Video Streaming Title Classification

机译:我知道您最后一刻看到的内容-加密的HTTP自适应视频流标题分类

获取原文
获取原文并翻译 | 示例

摘要

Desktops can be exploited to violate privacy. There are two main types of attack scenarios: active and passive. We consider the passive scenario where the adversary does not interact actively with the device, but is able to eavesdrop on the network traffic of the device from the network side. In the near future, most Internet traffic will be encrypted and thus passive attacks are challenging. Previous research has shown that information can be extracted from encrypted multimedia streams. This includes video title classification of non HTTP adaptive streams. This paper presents algorithms for encrypted HTTP adaptive video streaming title classification. We show that an external attacker can identify the video title from video HTTP adaptive streams sites, such as YouTube. To the best of our knowledge, this is the first work that shows this. We provide a large data set of 15000 YouTube video streams of 2100 popular video titles that was collected under real-world network conditions. We present several machine learning algorithms for the task and run a thorough set of experiments, which shows that our classification accuracy is higher than 95%. We also show that our algorithms are able to classify video titles that are not in the training set as unknown and some of the algorithms are also able to eliminate false prediction of video titles and instead report unknown. Finally, we evaluate our algorithm robustness to delays and packet losses at test time and show that our solution is robust to these changes.
机译:可以利用台式机侵犯隐私。攻击场景主要有两种:主动和被动。我们考虑了被动的情况,即对手没有与设备进行主动交互,但能够从网络侧窃听设备的网络流量。在不久的将来,大多数Internet流量将被加密,因此被动攻击将面临挑战。先前的研究表明,可以从加密的多媒体流中提取信息。这包括非HTTP自适应流的视频标题分类。本文提出了用于加密HTTP自适应视频流标题分类的算法。我们表明,外部攻击者可以从视频HTTP自适应流网站(例如YouTube)中识别视频标题。据我们所知,这是证明这一点的第一部作品。我们提供了在现实网络条件下收集的2100个流行视频标题的15000个YouTube视频流的大数据集。我们针对该任务提出了几种机器学习算法,并进行了一系列详尽的实验,表明我们的分类准确率高于95%。我们还表明,我们的算法能够将不在训练集中的视频标题分类为未知视频,并且某些算法还可以消除对视频标题的错误预测,而是报告未知视频。最后,我们在测试时评估了算法对时延和丢包的鲁棒性,并表明我们的解决方案对这些变化具有鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号