首页> 外文期刊>IEEE transactions on information forensics and security >Classification of Encrypted Traffic With Second-Order Markov Chains and Application Attribute Bigrams
【24h】

Classification of Encrypted Traffic With Second-Order Markov Chains and Application Attribute Bigrams

机译:具有二阶马尔可夫链的加密流量分类和应用属性双字母组

获取原文
获取原文并翻译 | 示例

摘要

With a profusion of network applications, traffic classification plays a crucial role in network management and policy-based security control. The widely used encryption transmission protocols, such as the secure socket layer/transport layer security (SSL/TLS) protocols, lead to the failure of traditional payload-based classification methods. Existing methods for encrypted traffic classification cannot achieve high discrimination accuracy for applications with similar fingerprints. In this paper, we propose an attribute-aware encrypted traffic classification method based on the second-order Markov Chains. We start by exploring approaches that can further improve the performance of existing methods in terms of discrimination accuracy, and make promising observations that the application attribute bigram, which consists of the certificate packet length and the first application data size in SSL/TLS sessions, contributes to application discrimination. To increase the diversity of application fingerprints, we develop a new method by incorporating the attribute bigrams into the second-order homogeneous Markov chains. Extensive evaluation results show that the proposed method can improve the classification accuracy by 29% on the average compared with the state-of-the-art Markov-based method.
机译:随着大量的网络应用程序,流量分类在网络管理和基于策略的安全控制中起着至关重要的作用。广泛使用的加密传输协议(例如安全套接字层/传输层安全性(SSL / TLS)协议)导致传统的基于有效负载的分类方法失败。对于具有相似指纹的应用程序,现有的加密流量分类方法无法实现较高的辨别精度。本文提出了一种基于二阶马尔可夫链的可感知属性的加密流量分类方法。我们首先探索可以进一步提高现有方法在判别准确性方面的性能的方法,并做出令人鼓舞的观察,即应用程序属性bigram(由证书包长度和SSL / TLS会话中的第一个应用程序数据大小组成)做出了贡献对应用程序的歧视。为了增加应用指纹的多样性,我们通过将属性双字母组合到二阶齐次马尔可夫链中来开发一种新方法。广泛的评估结果表明,与最新的基于马尔可夫的方法相比,该方法平均可将分类准确性提高29%。

著录项

  • 来源
  • 作者单位

    Beijing Engineering Research Center of High Volume Language Information Processing and Cloud Computing Applications, School of Computer Science, Beijing Institute of Technology, Beijing, China;

    Beijing Engineering Research Center of High Volume Language Information Processing and Cloud Computing Applications, School of Computer Science, Beijing Institute of Technology, Beijing, China;

    Beijing Engineering Research Center of High Volume Language Information Processing and Cloud Computing Applications, School of Computer Science, Beijing Institute of Technology, Beijing, China;

    Faculty of Arts, Business and Law, University of the Sunshine Coast, Sippy Downs, QLD, Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Markov processes; Servers; Protocols; Ciphers; Payloads;

    机译:马尔可夫过程;服务器;协议;密码;有效载荷;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号