首页> 外文期刊>Information Forensics and Security, IEEE Transactions on >Monet: A User-Oriented Behavior-Based Malware Variants Detection System for Android
【24h】

Monet: A User-Oriented Behavior-Based Malware Variants Detection System for Android

机译:Monet:适用于Android的基于用户的基于行为的恶意软件变体检测系统

获取原文
获取原文并翻译 | 示例

摘要

Android, the most popular mobile OS, has around 78% of the mobile market share. Due to its popularity, it attracts many malware attacks. In fact, people have discovered around 1 million new malware samples per quarter, and it was reported that over 98% of these new malware samples are in fact “derivatives” (or variants) from existing malware families. In this paper, we first show that runtime behaviors of malware's core functionalities are in fact similar within a malware family. Hence, we propose a framework to combine “runtime behavior” with “static structures” to detect malware variants. We present the design and implementation of Monet, which has a client and a backend server module. The client module is a lightweight, in-device app for behavior monitoring and signature generation, and we realize this using two novel interception techniques. The backend server is responsible for large scale malware detection. We collect 3723 malware samples and top 500 benign apps to carry out extensive experiments of detecting malware variants and defending against malware transformation. Our experiments show that Monet can achieve around 99% accuracy in detecting malware variants. Furthermore, it can defend against ten different obfuscation and transformation techniques, while only incurs around 7% performance overhead and about 3% battery overhead. More importantly, Monet will automatically alert users with intrusion details so to prevent further malicious behaviors.
机译:Android是最受欢迎的移动操作系统,约占移动市场份额的78%。由于其受欢迎程度,它吸引了许多恶意软件攻击。实际上,人们每季度发现了大约一百万个新的恶意软件样本,据报道,这些新恶意软件样本中有98%以上实际上是现有恶意软件家族的“衍生物”(或变体)。在本文中,我们首先表明,恶意软件核心功能的运行时行为实际上在恶意软件家族中是相似的。因此,我们提出了一个将“运行时行为”与“静态结构”结合起来以检测恶意软件变体的框架。我们介绍了Monet的设计和实现,它具有一个客户端和一个后端服务器模块。客户端模块是用于行为监控和签名生成的轻量级设备内应用程序,我们使用两种新颖的拦截技术来实现这一功能。后端服务器负责大规模恶意软件检测。我们收集了3723个恶意软件样本和前500个良性应用程序,以进行广泛的实验来检测恶意软件变体并防御恶意软件转换。我们的实验表明,Monet在检测恶意软件变体方面可以达到大约99%的准确性。此外,它可以抵御十种不同的混淆和转换技术,而仅产生约7%的性能开销和约3%的电池开销。更重要的是,Monet会自动向用户发出入侵详细信息,以防止进一步的恶意行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号