首页> 外文期刊>IEEE Transactions on Image Processing >Maximum likelihood parametric blur identification based on a continuous spatial domain model
【24h】

Maximum likelihood parametric blur identification based on a continuous spatial domain model

机译:基于连续空间域模型的最大似然参数模糊识别

获取原文
获取原文并翻译 | 示例

摘要

A formulation for maximum-likelihood (ML) blur identification based on parametric modeling of the blur in the continuous spatial coordinates is proposed. Unlike previous ML blur identification methods based on discrete spatial domain blur models, this formulation makes it possible to find the ML estimate of the extent, as well as other parameters, of arbitrary point spread functions that admit a closed-form parametric description in the continuous coordinates. Experimental results are presented for the cases of 1-D uniform motion blur, 2-D out-of-focus blur, and 2-D truncated Gaussian blur at different signal-to-noise ratios.
机译:提出了一种基于连续空间坐标中模糊参数化建模的最大似然(ML)模糊识别方法。与以前的基于离散空间域模糊模型的ML模糊识别方法不同,此公式使查找任意点扩展函数的程度以及其他参数的ML估计成为可能,该任意点扩展函数允许在连续图中进行闭式参数描述坐标。针对一维匀速运动模糊,二维离焦模糊和不同信噪比的二维截断高斯模糊的情况,给出了实验结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号