首页> 外文期刊>IEEE Transactions on Image Processing >On the convergence of the generalized maximum likelihood algorithm for nonuniform image motion estimation
【24h】

On the convergence of the generalized maximum likelihood algorithm for nonuniform image motion estimation

机译:广义最大似然算法用于非均匀图像运动估计的收敛性

获取原文
获取原文并翻译 | 示例

摘要

The generalized maximum likelihood algorithm is a powerful iterative scheme for waveform estimation. This algorithm seeks for the maximum likelihood estimates of the Karhunen-Loeve expansion coefficients of the waveform. The search for the maximum is performed by the steepest ascent routine. The objective of the paper is to obtain conditions that assure the stability in the mean for frame-to-frame image motion estimation. Sufficient conditions are established for the convergence of the algorithm in the absence of noise. Experimental results are presented that illustrate the behavior of the algorithm in the presence of various noise levels.
机译:广义最大似然算法是用于波形估计的强大迭代方案。该算法寻求波形的Karhunen-Loeve膨胀系数的最大似然估计。最大值搜索是通过最陡峭的上升例程执行的。本文的目的是获得确保帧间图像运动估计均值稳定的条件。在没有噪声的情况下为算法的收敛建立了充分条件。实验结果表明,该算法在各种噪声水平下的行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号