首页> 外文期刊>IEEE Transactions on Image Processing >A multiscale random field model for Bayesian image segmentation
【24h】

A multiscale random field model for Bayesian image segmentation

机译:贝叶斯图像分割的多尺度随机场模型

获取原文
获取原文并翻译 | 示例

摘要

Many approaches to Bayesian image segmentation have used maximum a posteriori (MAP) estimation in conjunction with Markov random fields (MRF). Although this approach performs well, it has a number of disadvantages. In particular, exact MAP estimates cannot be computed, approximate MAP estimates are computationally expensive to compute, and unsupervised parameter estimation of the MRF is difficult. The authors propose a new approach to Bayesian image segmentation that directly addresses these problems. The new method replaces the MRF model with a novel multiscale random field (MSRF) and replaces the MAP estimator with a sequential MAP (SMAP) estimator derived from a novel estimation criteria. Together, the proposed estimator and model result in a segmentation algorithm that is not iterative and can be computed in time proportional to MN where M is the number of classes and N is the number of pixels. The also develop a computationally efficient method for unsupervised estimation of model parameters. Simulations on synthetic images indicate that the new algorithm performs better and requires much less computation than MAP estimation using simulated annealing. The algorithm is also found to improve classification accuracy when applied to the segmentation of multispectral remotely sensed images with ground truth data.
机译:贝叶斯图像分割的许多方法都结合了最大后验(MAP)估计和马尔可夫随机场(MRF)。尽管此方法效果不错,但有许多缺点。特别是,无法计算出精确的MAP估计值,近似的MAP估计值在计算上的计算成本很高,并且MRF的无监督参数估计很困难。作者提出了一种直接解决这些问题的贝叶斯图像分割新方法。新方法用新颖的多尺度随机场(MSRF)代替了MRF模型,并用了从新颖的估计标准得出的顺序MAP(SMAP)估计器来代替MAP估计器。在一起,所提出的估计器和模型导致了一种分割算法,该算法不是迭代的,并且可以与MN成比例地在时间上进行计算,其中M是类别数,N是像素数。还开发了一种用于模型参数的无监督估计的高效计算方法。对合成图像的仿真表明,与使用模拟退火的MAP估计相比,新算法性能更好,所需计算量也少得多。当将算法应用于具有地面真实数据的多光谱遥感图像的分割时,还发现该算法可提高分类精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号