首页> 外文期刊>IEEE Transactions on Image Processing >Point-source localization in blurred images by a frequency-domain eigenvector-based method
【24h】

Point-source localization in blurred images by a frequency-domain eigenvector-based method

机译:基于频域特征向量的模糊图像点源定位

获取原文
获取原文并翻译 | 示例

摘要

We address the problem of resolving and localizing blurred point sources in intensity images. Telescopic star-field images blurred by atmospheric turbulence or optical aberrations are typical examples of this class of images, a new approach to image restoration is introduced, which is a generalization of 2-D sensor array processing techniques originating from the field of direction of arrival estimation (DOA). It is shown that in the frequency domain, blurred point source images can be modeled with a structure analogous to the response of linear sensor arrays to coherent signal sources. Thus, the problem may be cast into the form of DOA estimation, and eigenvector based subspace decomposition algorithms, such as MUSIC, may be adapted to search for these point sources. For deterministic point images the signal subspace is degenerate, with rank one, so rank enhancement techniques are required before MUSIC or related algorithms may be used. The presence of blur prohibits the use of existing rank enhancement methods. A generalized array smoothing method is introduced for rank enhancement in the presence of blur, and to regularize the ill posed nature of the image restoration. The new algorithm achieves inter-pixel super-resolution and is computationally efficient. Examples of star image deblurring using the algorithm are presented.
机译:我们解决了在强度图像中解析和定位模糊点源的问题。大气湍流或光学像差模糊的望远镜星空图像是此类图像的典型示例,引入了一种图像恢复的新方法,该方法是源自到达方向领域的二维传感器阵列处理技术的概括。估算(DOA)。结果表明,在频域中,可以用类似于线性传感器阵列对相干信号源的响应的结构对模糊点源图像进行建模。因此,该问题可能被转化为DOA估计的形式,并且基于特征向量的子空间分解算法(例如MUSIC)可能适用于搜索这些点源。对于确定性点图像,信号子空间是退化的,秩为1,因此在使用MUSIC或相关算法之前需要秩增强技术。模糊的存在禁止使用现有的秩增强方法。引入了一种通用的阵列平滑方法,用于在存在模糊的情况下增强秩,并规范化图像恢复的不适性。新算法可实现像素间超分辨率,并且计算效率高。给出了使用该算法对星图进行去模糊的示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号