首页> 外文期刊>IEEE Transactions on Image Processing >Conditional entropy-constrained residual VQ with application to image coding
【24h】

Conditional entropy-constrained residual VQ with application to image coding

机译:条件熵约束残差VQ及其在图像编码中的应用

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces an extension of entropy constrained residual vector quantization (VQ) where intervector dependencies are exploited. The method, which we call conditional entropy-constrained residual VQ, employs a high-order entropy conditioning strategy that captures local information in the neighboring vectors. When applied to coding images, the proposed method is shown to achieve better rate-distortion performance than that of entropy-constrained residual vector quantization with less computational complexity and lower memory requirements, moreover, it can be designed to support progressive transmission in a natural way. It is also shown to outperform some of the best predictive and finite-state VQ techniques reported in the literature. This is due partly to the joint optimization between the residual vector quantizer and a high order conditional entropy coder as well as the efficiency of the multistage residual VQ structure and the dynamic nature of the prediction.
机译:本文介绍了熵约束残差矢量量化(VQ)的扩展,其中利用了矢量间相关性。该方法称为条件熵约束残差VQ,它采用一种高阶熵条件化策略来捕获相邻向量中的局部信息。当应用于编码图像时,所提出的方法表现出比熵约束残差矢量量化更好的速率失真性能,并且计算复杂度更低,内存需求更低,此外,可以设计为以自然方式支持渐进传输。它也表现出优于文献中报道的某些最佳预测和有限状态VQ技术。这部分归因于残差矢量量化器和高阶条件熵编码器之间的联合优化,以及多级残差VQ结构的效率和预测的动态特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号