This paper introduces an extension of conditional entropy-constrained RVQ (CEC-RVQ) that embodies trellis-coded quantization. The method, which we call conditional entropy-constrained trellis-coded residual vector quantization (CEC-TCRVQ), quantizes a supervector (made from a large number of neighboring vectors) to better extract the two-dimensional (2-D) correlation present in real images. Simulation results indicate that CEC-TCRVQ provides 0.3-0.4 dB improvement over CEC-RVQ for the 4/spl times/4 vector case and 1.3 dB improvement for the 8/spl times/8 case.
展开▼
机译:本文介绍了条件熵约束RVQ(CEC-RVQ)的扩展,它体现了网格编码量化。该方法称为条件熵约束网格编码残差矢量量化(CEC-TCRVQ),它对超矢量(由大量相邻矢量组成)进行量化,以更好地提取存在于其中的二维(2-D)相关性。真实的图像。仿真结果表明,对于4 / spl times / 4矢量情况,CEC-TCRVQ比CEC-RVQ改进了0.3-0.4 dB,对于8 / spl times / 8情况,改进了1.3 dB。
展开▼