首页> 外文期刊>IEEE Transactions on Image Processing >Convex set theoretic image recovery by extrapolated iterations of parallel subgradient projections
【24h】

Convex set theoretic image recovery by extrapolated iterations of parallel subgradient projections

机译:通过平行次梯度投影的外推迭代凸集理论图像恢复

获取原文
获取原文并翻译 | 示例

摘要

Solving a convex set theoretic image recovery problem amounts to finding a point in the intersection of closed and convex sets in a Hilbert space. The projection onto convex sets (POCS) algorithm, in which an initial estimate is sequentially projected onto the individual sets according to a periodic schedule, has been the most prevalent tool to solve such problems. Nonetheless, POCS has several shortcomings: it converges slowly, it is ill suited for implementation on parallel processors, and it requires the computation of exact projections at each iteration. We propose a general parallel projection method (EMOPSP) that overcomes these shortcomings. At each iteration of EMOPSP, a convex combination of subgradient projections onto some of the sets is formed and the update is obtained via relaxation. The relaxation parameter may vary over an iteration-dependent, extrapolated range that extends beyond the interval [0,2] used in conventional projection methods. EMOPSP not only generalizes existing projection-based schemes, but it also converges very efficiently thanks to its extrapolated relaxations. Theoretical convergence results are presented as well as numerical simulations.
机译:解决凸集理论图像恢复问题等于在希尔伯特空间中找到封闭集和凸集相交处的点。凸集投影(POCS)算法是解决此类问题的最流行工具,在该算法中,根据周期性计划将初始估计值顺序投影到各个集合上。但是,POCS有几个缺点:收敛缓慢,不适合在并行处理器上实现,并且每次迭代都需要计算精确的投影。我们提出了一种克服这些缺点的通用并行投影方法(EMOPSP)。在EMOPSP的每次迭代中,形成次梯度投影到某些集合上的凸组合,并通过松弛获得更新。弛豫参数可以在依赖于迭代的外推范围内变化,该范围超出了常规投影方法中使用的间隔[0,2]。 EMOPSP不仅概括了现有的基于投影的方案,而且由于其推论的松弛而非常有效地收敛。给出了理论收敛结果以及数值模拟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号