首页> 外文期刊>IEEE Transactions on Image Processing >Multiscale segmentation and anomaly enhancement of SAR imagery
【24h】

Multiscale segmentation and anomaly enhancement of SAR imagery

机译:SAR图像的多尺度分割与异常增强

获取原文
获取原文并翻译 | 示例

摘要

We present efficient multiscale approaches to the segmentation of natural clutter, specifically grass and forest, and to the enhancement of anomalies in synthetic aperture radar (SAR) imagery. The methods we propose exploit the coherent nature of SAR sensors. In particular, they take advantage of the characteristic statistical differences in imagery of different terrain types, as a function of scale, due to radar speckle. We employ a class of multiscale stochastic processes that provide a powerful framework for describing random processes and fields that evolve in scale. We build models representative of each category of terrain of interest (i.e., grass and forest) and employ them in directing decisions on pixel classification, segmentation, and anomalous behaviour. The scale-autoregressive nature of our models allows extremely efficient calculation of likelihoods for different terrain classifications over windows of SAR imagery. We subsequently use these likelihoods as the basis for both image pixel classification and grass-forest boundary estimation. In addition, anomaly enhancement is possible with minimal additional computation. Specifically, the residuals produced by our models in predicting SAR imagery from coarser scale images are theoretically uncorrelated. As a result, potentially anomalous pixels and regions are enhanced and pinpointed by noting regions whose residuals display a high level of correlation throughout scale. We evaluate the performance of our techniques through testing on 0.3-m resolution SAR data gathered with Lincoln Laboratory's millimeter-wave SAR.
机译:我们提出了有效的多尺度方法,对自然杂物,特别是草和森林进行了分割,并增强了合成孔径雷达(SAR)图像中的异常。我们提出的方法利用了SAR传感器的相干特性。尤其是,由于雷达散斑,它们利用不同地形类型的图像中的特征统计差异作为比例的函数。我们采用了一类多尺度随机过程,这些过程提供了一个强大的框架来描述随机过程和规模不断扩大的领域。我们建立了代表感兴趣地形的每个类别的模型(即草地和森林),并将其用于指导像素分类,分割和异常行为的决策。我们模型的尺度自回归性质允许在SAR图像窗口上针对不同地形分类的可能性进行极其有效的计算。随后,我们将这些可能性用作图像像素分类和草地边界估计的基础。另外,通过最少的额外计算就可以实现异常增强。具体来说,我们的模型从较粗尺度的图像预测SAR图像时产生的残差在理论上是不相关的。结果,通过注意其残差在整个尺度上显示出高水平相关性的区域,可以增强和精确定位潜在的异常像素和区域。我们通过使用Lincoln Laboratory的毫米波SAR对0.3微米分辨率的SAR数据进行测试,评估了我们技术的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号