首页> 外文期刊>IEEE Transactions on Image Processing >Neural network-based systems for handprint OCR applications
【24h】

Neural network-based systems for handprint OCR applications

机译:用于手印OCR应用的基于神经网络的系统

获取原文
获取原文并翻译 | 示例

摘要

Over the last five years or so, neural network (NN)-based approaches have been steadily gaining performance and popularity for a wide range of optical character recognition (OCR) problems, from isolated digit recognition to handprint recognition. We present an NN classification scheme based on an enhanced multilayer perceptron (MLP) and describe an end-to-end system for form-based handprint OCR applications designed by the National Institute of Standards and Technology (NIST) Visual Image Processing Group. The enhancements to the MLP are based on (i) neuron activations functions that reduce the occurrences of singular Jacobians; (ii) successive regularization to constrain the volume of the weight space; and (iii) Boltzmann pruning to constrain the dimension of the weight space. Performance characterization studies of NN systems evaluated at the first OCR systems conference and the NIST form-based handprint recognition system are also summarized.
机译:在过去的五年左右的时间里,基于神经网络(NN)的方法在从孤立的数字识别到手印识别的各种光学字符识别(OCR)问题中一直稳定地获得性能和普及。我们提出了一种基于增强型多层感知器(MLP)的NN分类方案,并描述了由美国国家标准技术研究院(NIST)视觉图像处理小组设计的基于表单的手印OCR应用的端到端系统。 MLP的增强基于(i)减少奇异Jacobian发生的神经元激活功能; (ii)连续进行正则化以限制重量空间的体积; (iii)Boltzmann修剪以限制权重空间的尺寸。还总结了在第一次OCR系统会议上评估的NN系统和基于NIST表格的手印识别系统的性能表征研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号