首页> 外文期刊>IEEE Transactions on Image Processing >Kronecker-product gain-shape vector quantization for multispectral and hyperspectral image coding
【24h】

Kronecker-product gain-shape vector quantization for multispectral and hyperspectral image coding

机译:用于多光谱和高光谱图像编码的Kronecker积增益形状矢量量化

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a new vector quantization based (VQ-based) technique for very low bit rate encoding of multispectral images. We rely on the assumption that the shape of a generic spatial block does not change significantly from band to band, as is the case for high spectral-resolution imagery. In such a hypothesis, it is possible to accurately quantize a three-dimensional (3-D) block-composed of homologous two-dimensional (2-D) blocks drawn from several bands-as the Kronecker-product of a spatial-shape codevector and a spectral-gain codevector, with significant computation saving with respect to straight VQ. An even higher complexity reduction is obtained by representing each 3-D block in its minimum-square-error Kronecker-product form and by quantizing the component shape and gain vectors. For the block sizes considered, this encoding strategy is over 100 times more computationally efficient than unconstrained VQ, and over ten times more computationally efficient than direct gain-shape VQ. The proposed technique is obviously suboptimal with respect to VQ, but the huge complexity reduction allows one to use much larger blocks than usual and to better exploit both the statistical and psychovisual redundancy of the image. Numerical experiments show fully satisfactory results whenever the shape-invariance hypothesis turns out to be accurate enough, as in the case of hyperspectral images. In particular, for a given level of complexity and image quality, the compression ratio is up to five times larger than that provided by ordinary VQ, and also larger than that provided by other techniques specifically designed for multispectral image coding.
机译:本文提出了一种新的基于矢量量化(基于VQ)的技术,用于对多光谱图像进行非常低的比特率编码。我们依赖于这样的假设,即一般的空间块的形状不会像高光谱分辨率图像那样在各个波段之间显着变化。在这种假设下,可以精确地量化由从多个频带绘制的同源二维(2-D)块组成的三维(3-D)块,作为空间形状代码矢量的Kronecker积和频谱增益代码矢量,相对于直接VQ而言,可节省大量计算量。通过将每个3-D块表示为其最小平方误差Kronecker乘积形式,并通过量化组件形状和增益矢量,可以实现更高的复杂度降低。对于所考虑的块大小,此编码策略的计算效率是无约束VQ的100倍以上,并且计算效率是直接增益形VQ的十倍以上。相对于VQ,提出的技术显然不是次优的,但是大幅降低了复杂度使得人们可以使用比通常更大的块,并更好地利用图像的统计和心理视觉冗余。数值实验表明,只要形状不变性假设足够准确,就可以得到令人满意的结果,例如高光谱图像。特别地,对于给定水平的复杂度和图像质量,压缩率比普通VQ所提供的压缩率高五倍,并且也比专门为多光谱图像编码设计的其他技术所提供的压缩率高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号