首页> 外文期刊>IEEE Transactions on Image Processing >Dense estimation and object-based segmentation of the optical flow with robust techniques
【24h】

Dense estimation and object-based segmentation of the optical flow with robust techniques

机译:鲁棒技术对光流进行密集估计和基于对象的分割

获取原文
获取原文并翻译 | 示例

摘要

We address the issue of recovering and segmenting the apparent velocity field in sequences of images. As for motion estimation, we minimize an objective function involving two robust terms. The first one cautiously captures the optical flow constraint, while the second (a priori) term incorporates a discontinuity-preserving smoothness constraint. To cope with the nonconvex minimization problem thus defined, we design an efficient deterministic multigrid procedure. It converges fast toward estimates of good quality, while revealing the large discontinuity structures of flow fields. We then propose an extension of the model by attaching to it a flexible object-based segmentation device based on deformable closed curves (different families of curve equipped with different kinds of prior can be easily supported). Experimental results on synthetic and natural sequences are presented, including an analysis of sensitivity to parameter tuning.
机译:我们解决了在图像序列中恢复和分割视在速度场的问题。至于运动估计,我们将涉及两个稳健项的目标函数最小化。第一个谨慎地捕获了光流约束,而第二个(先验)合并了保持不连续性的平滑约束。为了解决由此定义的非凸最小化问题,我们设计了一种有效的确定性多重网格程序。它快速收敛到对质量的估计,同时揭示了流场的大不连续结构。然后,我们通过在模型上附加一个基于可变形的闭合曲线的基于对象的灵活分段设备来扩展模型(可以轻松支持配备有各种先验条件的不同曲线族)。给出了合成和自然序列的实验结果,包括对参数调整灵敏度的分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号