首页> 外文期刊>IEEE Transactions on Image Processing >Statistically based methods for anomaly characterization in images from observations of scattered radiation
【24h】

Statistically based methods for anomaly characterization in images from observations of scattered radiation

机译:基于统计的基于散射辐射观测的图像异常表征方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present an algorithm for the detection, localization, and characterization of anomalous structures in an overall region of interest given observations of scattered electromagnetic fields obtained along the boundary of the region. Such anomaly detection problems are encountered in applications including medical imaging, radar signal processing, and geophysical exploration. The techniques developed in this work are based on a nonlinear scattering model relating the anomalous structures to the observed data. A sequence of M-ary hypothesis tests are employed first to localize anomalous behavior to large areas and then to refine these initial estimates to better characterize the true target structures. We introduce a method for the incorporation of prior information into the processing which reflects constraints relevant directly to the anomaly detection problem such as the number, shapes, and sizes of anomalies present in the region. The algorithm is demonstrated using a low-frequency, inverse conductivity problem found in geophysical applications.
机译:在本文中,我们给出了一种用于检测,定位和表征整个感兴趣区域中异常结构的算法,其中给出了沿该区域边界获得的散射电磁场的观察结果。在医学成像,雷达信号处理和地球物理探测等应用中会遇到这种异常检测问题。这项工作中开发的技术基于将异常结构与观测数据相关联的非线性散射模型。首先使用一系列的M元假设检验将异常行为定位在大面积上,然后完善这些初始估计值以更好地表征真实的目标结构。我们介绍了一种将先验信息合并到处理中的方法,该方法可反映与异常检测问题直接相关的约束,例如存在于该区域中的异常的数量,形状和大小。使用在地球物理应用中发现的低频,反电导率问题演示了该算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号