首页> 外文期刊>IEEE Transactions on Image Processing >A new dynamic finite-state vector quantization algorithm for image compression
【24h】

A new dynamic finite-state vector quantization algorithm for image compression

机译:一种新的图像压缩动态有限状态矢量量化算法

获取原文
获取原文并翻译 | 示例

摘要

The picture quality of conventional memory vector quantization techniques is limited by their supercodebooks. This paper presents a new dynamic finite-state vector quantization (DFSVQ) algorithm which provides better quality than the best quality that the supercodebook can offer. The new DFSVQ exploits the global interblock correlation of image blocks instead of local correlation in conventional DFSVQs. For an input block, we search the closest block from the previously encoded data using the side-match technique. The closest block is then used as the prediction of the input block, or used to generate a dynamic codebook. The input block is encoded by the closest block, dynamic codebook or supercodebook. Searching for the closest block from the previously encoded data is equivalent to expand the codevector space; thus the picture quality achieved is not limited by the supercodebook. Experimental results reveal that the new DFSVQ reduces bit rate significantly and provides better visual quality, as compared to the basic VQ and other DFSVQs.
机译:常规存储矢量量化技术的图像质量受到其超级码本的限制。本文提出了一种新的动态有限状态矢量量化(DFSVQ)算法,该算法提供的质量比超级码本可以提供的最佳质量更好。新的DFSVQ利用图像块的全局块间相关性,而不是传统DFSVQ中的局部相关性。对于输入块,我们使用侧向匹配技术从先前编码的数据中搜索最接近的块。然后,最接近的块用作输入块的预测,或用于生成动态码本。输入块由最接近的块,动态代码簿或超级代码簿编码。从先前编码的数据中搜索最接近的块等效于扩展代码矢量空间。因此,所获得的图像质量不受超级码本的限制。实验结果表明,与基本VQ和其他DFSVQ相比,新型DFSVQ显着降低了比特率并提供了更好的视觉质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号