首页> 外文期刊>IEEE Transactions on Image Processing >A generalized interpolative vector quantization method for jointly optimal quantization, interpolation, and binarization of text images
【24h】

A generalized interpolative vector quantization method for jointly optimal quantization, interpolation, and binarization of text images

机译:一种用于文本图像联合优化量化,内插和二值化的广义内插矢量量化方法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an approach for the effective combination of interpolation with binarization of gray level text images to reconstruct a high resolution binary image from a lower resolution gray level one. We study two nonlinear interpolative techniques for text image interpolation. These nonlinear interpolation methods map quantized low dimensional 2/spl times/2 image blocks to higher dimensional 4/spl times/4 (possibly binary) blocks using a table lookup operation. The first method performs interpolation of text images using context-based, nonlinear, interpolative, vector quantization (NLIVQ). This system has a simple training procedure and has performance (for gray-level high resolution images) that is comparable to our more sophisticated generalized interpolative VQ (GIVQ) approach, which is the second method. In it, we jointly optimize the quantizer and interpolator to find matched codebooks for the low and high resolution images. Then, to obtain the binary codebook that incorporates binarization with interpolation, we introduce a binary constrained optimization method using GIVQ. In order to incorporate the nearest neighbor constraint on the quantizer while minimizing the distortion in the interpolated image, a deterministic-annealing-based optimization technique is applied. With a few interpolation examples, we demonstrate the superior performance of this method over the NLIVQ method (especially for binary outputs) and other standard techniques e.g., bilinear interpolation and pixel replication.
机译:本文提出了一种有效的插值方法与灰度文本图像的二值化相结合的方法,可以从较低分辨率的灰度图像中重建高分辨率的二进制图像。我们研究了两种用于文本图像插值的非线性插值技术。这些非线性内插方法使用表查找操作将量化的低维2 / spl次/ 2个图像块映射到高维4 / spl次/ 4个(可能是二进制)块。第一种方法使用基于上下文的,非线性的,插值的矢量量化(NLIVQ)执行文本图像的插值。该系统具有简单的训练过程,并且具有(对于灰度级高分辨率图像)性能,可与第二种方法我们更复杂的广义插值VQ(GIVQ)方法相媲美。在其中,我们共同优化了量化器和内插器,以找到适用于低分辨率和高分辨率图像的匹配码本。然后,为了获得结合了二值化和插值的二进制码本,我们介绍了一种使用GIVQ的二进制约束优化方法。为了在量化器上合并最近邻约束,同时最小化插值图像中的失真,应用了基于确定性退火的优化技术。通过一些插值示例,我们证明了该方法优于NLIVQ方法(特别是对于二进制输出)和其他标准技术(例如双线性插值和像素复制)的优越性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号