首页> 外文期刊>IEEE Transactions on Image Processing >A simple unsupervised MRF model based image segmentation approach
【24h】

A simple unsupervised MRF model based image segmentation approach

机译:一种基于MRF模型的简单无监督图像分割方法

获取原文
获取原文并翻译 | 示例

摘要

A simple technique has been suggested to obtain optimal segmentation based on tonal and textural characteristics of an image using the Markov random field (MRF) model. The technique takes an initially over segmented image as well as the original image as its inputs and defines an MRF over the region adjacency graph (RAG) of the initially segmented regions. A tonal-region based segmentation technique due to Kartikeyan and Sarkar (1989) has been used for initial segmentation. The energy function has been defined over the first order cliques of the MRF. The essence of this approach is primarily based on quantitative values of the second order statistics, on region characteristics and consequently deciding upon the action of merging neighboring regions using the F-statistic. The effectiveness of our approach is demonstrated with wide variety of real life examples viz., indoor, outdoor and satellite and a comparison of its output with that of a previous work in the literature has been provided.
机译:已提出一种简单的技术,以使用马尔可夫随机场(MRF)模型基于图像的色调和纹理特征获得最佳分割。该技术将初始过度分割的图像以及原始图像作为输入,并在初始分割区域的区域邻接图(RAG)上定义MRF。由Kartikeyan和Sarkar(1989)提出的基于音调区域的分割技术已用于初始分割。能量函数已在MRF的一阶集团中定义。这种方法的本质主要是基于二阶统计量的定量值,区域特征,因此决定使用F统计量合并相邻区域的操作。我们通过室内,室外和卫星等各种现实生活实例证明了我们方法的有效性,并提供了其输出与文献中先前工作的比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号