首页> 外文期刊>IEEE Transactions on Image Processing >Template matching based object recognition with unknown geometric parameters
【24h】

Template matching based object recognition with unknown geometric parameters

机译:基于模板匹配的未知几何参数的目标识别

获取原文
获取原文并翻译 | 示例

摘要

We examine the problem of locating an object in an image when size and rotation are unknown. Previous work has shown that with known geometric parameters, an image restoration method can be useful by estimating a delta function at the object location. When the geometric parameters are unknown, this method becomes impractical because the likelihood surface to be minimized across size and rotation has numerous local minima and areas of zero gradient. We propose a new approach where a smooth approximation of the template is used to minimize a well-behaved likelihood surface. A coarse-to-fine approximation of the original template using a diffusion-like equation is used to create a library of templates. Using this library, we can successively perform minimizations which are locally well-behaved. As detail is added to the template, the likelihood surface gains local minima, but previous estimates place us within a well-behaved "bowl" around the global minimum, leading to an accurate estimate. Numerical experiments are shown which verify the value of this approach for a wide range of values of the geometric parameters.
机译:我们研究了大小和旋转未知时在图像中定位对象的问题。先前的工作表明,在已知几何参数的情况下,通过估计对象位置的增量函数,可以使用图像恢复方法。当几何参数未知时,此方法变得不切实际,因为要在尺寸和旋转方向上最小化的似然面具有许多局部最小值和零梯度区域。我们提出了一种新方法,其中使用模板的平滑逼近来最小化行为良好的似然表面。使用类似于扩散的方程式对原始模板进行粗略到精细的近似来创建模板库。使用此库,我们可以连续执行本地行为良好的最小化。随着向模板中添加详细信息,似然表面获得了局部最小值,但先前的估计使我们处于围绕全局最小值的行为良好的“碗状”中,从而导致了准确的估计。显示了数值实验,这些实验验证了该方法在各种几何参数值中的价值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号