首页> 外文期刊>Mathematical Problems in Engineering >Underwater Object Recognition Using Transformable Template Matching Based on Prior Knowledge
【24h】

Underwater Object Recognition Using Transformable Template Matching Based on Prior Knowledge

机译:基于先验知识的可变换模板匹配水下物体识别

获取原文
获取原文并翻译 | 示例

摘要

Underwater object recognition in sonar images, such as mine detection and wreckage detection of a submerged airplane, is a very challenging task. The main difficulties include but are not limited to object rotation, confusion from false targets and complex backgrounds, and extensibility of recognition ability on diverse types of objects. In this paper, we propose an underwater object detection and recognition method using a transformable template matching approach based on prior knowledge. Specifically, we first extract features and construct a template from sonar video sequences based on the analysis of acoustic shadows and highlight regions. Then, we identify the target region in the objective image by fast saliency detection techniques based on FFT, which can significantly improve efficiency by avoiding an exhaustive global search. After affine transformation of the template according to the orientation of the target, we extract normalized gradient features and calculate the similarity between the template and the target region, which can solve various difficulties mentioned above using only one template. Experimental results demonstrate that the proposed method can well recognize different underwater objects, such as mine-like objects and triangle-like objects and can satisfy the demands of real-time application.
机译:声纳图像中的水下物体识别(例如,水下飞机的地雷检测和残骸检测)是一项非常具有挑战性的任务。主要困难包括但不限于对象旋转,错误目标和复杂背景造成的混淆以及对各种类型对象的识别能力的扩展。在本文中,我们基于现有知识提出了一种使用可变形模板匹配方法的水下物体检测与识别方法。具体来说,我们首先根据声影和高光区域的分析从声纳视频序列中提取特征并构建模板。然后,我们通过基于FFT的快速显着性检测技术来识别目标图像中的目标区域,这可以通过避免详尽的全局搜索来显着提高效率。根据目标的方向对模板进行仿射变换后,我们提取了标准化的梯度特征并计算了模板与目标区域之间的相似度,仅使用一个模板就可以解决上述各种难题。实验结果表明,该方法能够很好地识别不同的水下物体,如矿山物体和三角形物体,并能满足实时应用的需求。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2019年第3期|2892975.1-2892975.11|共11页
  • 作者单位

    Changshu Inst Technol Sch Elect & Automat Engn Changshu 215500 Jiangsu Peoples R China;

    Chinese Acad Sci Shenyang Inst Automat State Key Lab Robot Shenyang 110016 Peoples R China|Northeastern Univ Fac Robot Sci & Engn Shenyang 110819 Liaoning Peoples R China;

    Chinese Acad Sci Shenyang Inst Automat State Key Lab Robot Shenyang 110016 Peoples R China;

    Northeastern Univ Fac Robot Sci & Engn Shenyang 110819 Liaoning Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号