首页> 外文期刊>IEEE Transactions on Image Processing >A joint inter- and intrascale statistical model for Bayesian wavelet based image denoising
【24h】

A joint inter- and intrascale statistical model for Bayesian wavelet based image denoising

机译:基于贝叶斯小波的图像去噪联合尺度内和尺度内联合模型

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new wavelet-based image denoising method, which extends a "geometrical" Bayesian framework. The new method combines three criteria for distinguishing supposedly useful coefficients from noise: coefficient magnitudes, their evolution across scales and spatial clustering of large coefficients near image edges. These three criteria are combined in a Bayesian framework. The spatial clustering properties are expressed in a prior model. The statistical properties concerning coefficient magnitudes and their evolution across scales are expressed in a joint conditional model. The three main novelties with respect to related approaches are (1) the interscale-ratios of wavelet coefficients are statistically characterized and different local criteria for distinguishing useful coefficients from noise are evaluated, (2) a joint conditional model is introduced, and (3) a novel anisotropic Markov random field prior model is proposed. The results demonstrate an improved denoising performance over related earlier techniques.
机译:本文提出了一种新的基于小波的图像去噪方法,该方法扩展了“几何”贝叶斯框架。新方法结合了三个标准,以区分出可能有用的系数和噪声:系数幅度,它们在尺度上的演变以及图像边缘附近大系数的空间聚类。这三个标准在贝叶斯框架中结合在一起。空间聚类属性在先验模型中表示。在联合条件模型中表达了有关系数幅度及其跨尺度演变的统计特性。关于相关方法的三个主要新颖性是:(1)对小波系数的尺度间比率进行统计表征,并评估用于区分有用系数与噪声的不同局部准则;(2)引入联合条件模型;以及(3)提出了一种新颖的各向异性马尔可夫随机场先验模型。结果表明,与相关的早期技术相比,其去噪性能有所提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号