首页> 外文期刊>IEEE Transactions on Image Processing >Relevance feedback in content-based image retrieval: Bayesian framework, feature subspaces, and progressive learning
【24h】

Relevance feedback in content-based image retrieval: Bayesian framework, feature subspaces, and progressive learning

机译:基于内容的图像检索中的相关性反馈:贝叶斯框架,特征子空间和渐进式学习

获取原文
获取原文并翻译 | 示例

摘要

Research has been devoted in the past few years to relevance feedback as an effective solution to improve performance of content-based image retrieval (CBIR). In this paper, we propose a new feedback approach with progressive learning capability combined with a novel method for the feature subspace extraction. The proposed approach is based on a Bayesian classifier and treats positive and negative feedback examples with different strategies. Positive examples are used to estimate a Gaussian distribution that represents the desired images for a given query; while the negative examples are used to modify the ranking of the retrieved candidates. In addition, feature subspace is extracted and updated during the feedback process using a principal component analysis (PCA) technique and based on user's feedback. That is, in addition to reducing the dimensionality of feature spaces, a proper subspace for each type of features is obtained in the feedback process to further improve the retrieval accuracy. Experiments demonstrate that the proposed method increases the retrieval speed, reduces the required memory and improves the retrieval accuracy significantly.
机译:在过去的几年中,已经致力于将相关性反馈作为提高基于内容的图像检索(CBIR)性能的有效解决方案。在本文中,我们提出了一种具有渐进学习能力的新反馈方法,并结合了一种新的特征子空间提取方法。所提出的方法基于贝叶斯分类器,并使用不同的策略来对待正反馈和负反馈示例。正例用于估计高斯分布,该高斯分布表示给定查询的所需图像。否定示例用于修改检索到的候选者的排名。另外,特征子空间在提取过程中使用主成分分析(PCA)技术并基于用户的反馈进行提取和更新。即,除了减小特征空间的维数之外,还在反馈处理中获得针对每种类型的特征的适当子空间,以进一步提高检索精度。实验表明,该方法提高了检索速度,减少了所需的内存,并显着提高了检索精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号