首页> 中文期刊> 《计算机应用与软件》 >基于内容的贝叶斯自学习邮件过滤模型

基于内容的贝叶斯自学习邮件过滤模型

     

摘要

简单贝叶斯算法在邮件过滤领域得到广泛的应用,但它的两个缺点限制了它的使用,首先它不能进行连续的自学习,当邮件内容发生较大变化时,准确性急剧下降.其次是没有考虑字,词,短语之间的联系,以及词语的表现能力,不能准确反映邮件本身的内容性质.因此提出一种自学习的贝叶斯邮件过滤模型:它能够不断地进行自学习,使模型内部参数能够随着邮件内容的变化而改变,而且它将邮件特征(词语)之间的关系以及它们的表达能力引入,作为模型计算的基础之一,并且对用户发送的邮件进行学习.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号