首页> 外文期刊>IEEE Transactions on Image Processing >Robust optical flow estimation based on a sparse motion trajectory set
【24h】

Robust optical flow estimation based on a sparse motion trajectory set

机译:基于稀疏运动轨迹集的鲁棒光流估计

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an approach to the problem of estimating a dense optical flow field. The approach is based on a multiframe, irregularly spaced motion trajectory set, where each trajectory describes the motion of a given point as a function of time. From this motion trajectory set a dense flow field is estimated using a process of interpolation. A set of localized motion models are estimated, with each pixel labeled as belonging to one of the motion models. A Markov random field framework is adopted, allowing the incorporation of contextual constraints to encourage region-like structures. The approach is compared with a number of conventional optical flow estimation algorithms taken over a number of real and synthetic sequences. Results indicate that the method produces more accurate results for sequences with known ground truth flow. Also, applying the method to real sequences with unknown flow results in lower DFD, for all of the sequences tested.
机译:本文提出了一种用于估计密集光流场的方法。该方法基于多帧,不规则间隔的运动轨迹集,其中每个轨迹都将给定点的运动描述为时间的函数。使用插值过程从该运动轨迹集中估计出一个密集的流场。估计一组局部运动模型,每个像素被标记为属于其中一个运动模型。采用了马尔可夫随机场框架,允许合并上下文约束以鼓励类似区域的结构。将该方法与采用了许多实数和合成序列的许多常规光流估计算法进行了比较。结果表明,该方法对于已知地面实况流的序列产生更准确的结果。同样,将该方法应用于流量未知的真实序列会降低所有测试序列的DFD。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号