首页> 外文期刊>IEEE Transactions on Image Processing >Error concealment for video transmission with dual multiscale Markov random field modeling
【24h】

Error concealment for video transmission with dual multiscale Markov random field modeling

机译:使用双多尺度马尔可夫随机场建模进行视频传输的错误隐藏

获取原文
获取原文并翻译 | 示例

摘要

A novel error concealment algorithm based on a stochastic modeling approach is proposed as a post-processing tool at the decoder side for recovering the lost information incurred during the transmission of encoded digital video bitstreams. In our proposed scheme, both the spatial and the temporal contextual features in video signals are separately modeled using the multiscale Markov random field (MMRF). The lost information is then estimated using maximum a posteriori (MAP) probabilistic approach based on the spatial and temporal MMRF models; hence, a unified MMRF-MAP framework. To preserve the high frequency information (in particular, the edges) of the damaged video frames through iterative optimization, a new adaptive potential function is also introduced in this paper. Comparing to the existing MRF-based schemes and other traditional concealment algorithms, the proposed dual MMRF (DMMRF) modeling method offers significant improvement on both objective peak signal-to-noise ratio (PSNR) measurement and subjective visual quality of restored video sequence.
机译:提出了一种基于随机建模方法的新型错误隐藏算法,作为解码器端的后处理工具,用于恢复在编码数字视频比特流传输过程中产生的丢失信息。在我们提出的方案中,使用多尺度马尔可夫随机场(MMRF)分别对视频信号中的空间和时间上下文特征进行建模。然后基于空间和时间MMRF模型,使用最大后验(MAP)概率方法估计丢失的信息;因此,一个统一的MMRF-MAP框架。为了通过迭代优化保留受损视频帧的高频信息(特别是边缘),本文还引入了一种新的自适应势函数。与现有的基于MRF的方案和其他传统的隐藏算法相比,所提出的双重MMRF(DMMRF)建模方法在客观峰值信噪比(PSNR)测量和恢复的视频序列的主观视觉质量上均提供了显着改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号