首页> 外文期刊>IEEE Transactions on Image Processing >Hex-splines: a novel spline family for hexagonal lattices
【24h】

Hex-splines: a novel spline family for hexagonal lattices

机译:六角花键:用于六角格的新颖花键系列

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a new family of bivariate, nonseparable splines, called hex-splines, especially designed for hexagonal lattices. The starting point of the construction is the indicator function of the Voronoi cell, which is used to define in a natural way the first-order hex-spline. Higher order hex-splines are obtained by successive convolutions. A mathematical analysis of this new bivariate spline family is presented. In particular, we derive a closed form for a hex-spline of arbitrary order. We also discuss important properties, such as their Fourier transform and the fact they form a Riesz basis. We also highlight the approximation order. For conventional rectangular lattices, hex-splines revert to classical separable tensor-product B-splines. Finally, some prototypical applications and experimental results demonstrate the usefulness of hex-splines for handling hexagonally sampled data.
机译:本文提出了一个新的不可变量的双变量样条族,称为六角样条,专门为六角形晶格设计。构造的起点是Voronoi单元的指标函数,该函数用于自然定义一阶十六进制样条曲线。高阶十六进制样条通过连续卷积获得。提出了这个新的双变量样条族的数学分析。特别地,我们为任意顺序的十六进制样条导出闭合形式。我们还将讨论重要的属性,例如它们的傅里叶变换以及它们形成Riesz基础的事实。我们还突出显示了近似阶数。对于常规的矩形格子,十六进制样条恢复为经典的可分离张量积B样条。最后,一些原型应用和实验结果证明了十六进制样条对于处理六边形采样数据的有用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号