首页> 外文期刊>IEEE Transactions on Image Processing >Image segmentation and selective smoothing by using Mumford-Shah model
【24h】

Image segmentation and selective smoothing by using Mumford-Shah model

机译:使用Mumford-Shah模型进行图像分割和选择性平滑

获取原文
获取原文并翻译 | 示例

摘要

Recently, Chan and Vese developed an active contour model for image segmentation and smoothing by using piecewise constant and smooth representation of an image. Tsai et al. also independently developed a segmentation and smoothing method similar to the Chan and Vese piecewise smooth approach. These models are active contours based on the Mumford-Shah variational approach and the level-set method. In this paper, we develop a new hierarchical method which has many advantages compared to the Chan and Vese multiphase active contour models. First, unlike previous works, the curve evolution partial differential equations (PDEs) for different level-set functions are decoupled. Each curve evolution PDE is the equation of motion of just one level-set function, and different level-set equations of motion are solved in a hierarchy. This decoupling of the motion equations of the level-set functions speeds up the segmentation process significantly. Second, because of the coupling of the curve evolution equations associated with different level-set functions, the initialization of the level sets in Chan and Vese's method is difficult to handle. In fact, different initial conditions may produce completely different results. The hierarchical method proposed in this paper can avoid the problem due to the choice of initial conditions. Third, in this paper, we use the diffusion equation for denoising. This method, therefore, can deal with very noisy images. In general, our method is fast, flexible, not sensitive to the choice of initial conditions, and produces very good results.
机译:最近,Chan和Vese开发了一种主动轮廓模型,通过使用图像的分段恒定和平滑表示来进行图像分割和平滑。蔡等。还独立开发了类似于Chan和Vese分段平滑方法的分段和平滑方法。这些模型是基于Mumford-Shah变分方法和水平集方法的活动轮廓。在本文中,我们开发了一种新的分层方法,与Chan和Vese多相有源轮廓模型相比,它具有许多优势。首先,与以前的工作不同,将不同水平集函数的曲线演化偏微分方程(PDE)解耦。每个曲线演化PDE只是一个水平集函数的运动方程,并且不同的水平集运动方程在一个层次中求解。水平集功能的运动方程式的这种解耦大大加快了分割过程。其次,由于与不同的水平集函数相关联的曲线演化方程的耦合,Chan and Vese方法中的水平集的初始化很难处理。实际上,不同的初始条件可能会产生完全不同的结果。本文提出的分层方法可以避免由于初始条件的选择而产生的问题。第三,在本文中,我们使用扩散方程进行降噪。因此,该方法可以处理非常嘈杂的图像。通常,我们的方法快速,灵活,对初始条件的选择不敏感,并且产生非常好的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号