首页> 外文期刊>IEEE Transactions on Image Processing >An Image Model and Segmentation Algorithm for Reflectance Confocal Images of In Vivo Cervical Tissue
【24h】

An Image Model and Segmentation Algorithm for Reflectance Confocal Images of In Vivo Cervical Tissue

机译:宫颈组织反射共聚焦图像的图像模型和分割算法

获取原文
获取原文并翻译 | 示例

摘要

The automatic segmentation of nuclei in confocal reflectance images of cervical tissue is an important goal toward developing less expensive cervical precancer detection methods. Since in vivo confocal reflectance microscopy is an emerging technology for cancer detection, no prior work has been reported on the automatic segmentation of in vivo confocal reflectance images. However, prior work has shown that nuclear size and nuclear-to-cytoplasmic ratio can determine the presence or extent of cervical precancer. Thus, segmenting nuclei in confocal images will aid in cervical precancer detection. Successful segmentation of images of any type can be significantly enhanced by the introduction of accurate image models. To enable a deeper understanding of confocal reflectance microscopy images of cervical tissue, and to supply a basis for parameter selection in a classification algorithm, we have developed a model that accounts for the properties of the imaging system and of the tissues. Using our model in conjunction with a powerful image enhancement tool (anisotropic median-diffusion), appropriate statistical image modeling of spatial interactions (Gaussian Markov random fields), and a Bayesian framework for classification-segmentation, we have developed an effective algorithm for automatically segmenting nuclei in confocal images of cervical tissue. We have applied our algorithm to an extensive set of cervical images and have found that it detects 90% of hand-segmented nuclei with an average of 6 false positives per frame.
机译:宫颈组织共焦反射图像中的核自动分割是开发较便宜的宫颈癌前检测方法的重要目标。由于体内共聚焦反射显微镜是用于癌症检测的新兴技术,因此尚未有关于体内共聚焦反射图像自动分割的先前报道。但是,先前的研究表明,核大小和核质比可以确定子宫颈癌的存在或程度。因此,在共焦图像中分割核将有助于宫颈癌前检测。通过引入准确的图像模型,可以显着增强任何类型图像的成功分割。为了更深入地了解宫颈组织的共聚焦反射显微镜图像,并为分类算法中的参数选择提供基础,我们开发了一个模型,该模型考虑了成像系统和组织的特性。通过将我们的模型与功能强大的图像增强工具(各向异性中值扩散),适当的空间相互作用统计图像建模(高斯马尔可夫随机场)以及贝叶斯分类分段框架相结合,我们开发了一种有效的算法来自动进行分段宫颈组织共聚焦图像中的核。我们将算法应用于大量的宫颈图像,发现该算法可检测到90%的手段细胞核,每帧平均6个假阳性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号