首页> 外文期刊>IEEE Transactions on Image Processing >Landcover classification in MRF context using Dempster-Shafer fusion for multisensor imagery
【24h】

Landcover classification in MRF context using Dempster-Shafer fusion for multisensor imagery

机译:使用Dempster-Shafer融合的MRF上下文中的土地覆盖分类,用于多感官图像

获取原文
获取原文并翻译 | 示例

摘要

This work deals with multisensor data fusion to obtain landcover classification. The role of feature-level fusion using the Dempster-Shafer rule and that of data-level fusion in the MRF context is studied in this paper to obtain an optimally segmented image. Subsequently, segments are validated and classification accuracy for the test data is evaluated. Two examples of data fusion of optical images and a synthetic aperture radar image are presented, each set having been acquired on different dates. Classification accuracies of the technique proposed are compared with those of some recent techniques in literature for the same image data.
机译:这项工作涉及多传感器数据融合以获得土地覆盖分类。本文研究了使用Dempster-Shafer规则进行特征级融合以及在MRF上下文中进行数据级融合的作用,以获得最佳的分割图像。随后,对段进行验证,并评估测试数据的分类准确性。给出了光学图像和合成孔径雷达图像数据融合的两个例子,每个集合都是在不同的日期获取的。将所提出技术的分类精度与文献中针对同一图像数据的某些最新技术的分类精度进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号