首页> 外文期刊>IEEE Transactions on Image Processing >On the modeling of small sample distributions with generalized Gaussian density in a maximum likelihood framework
【24h】

On the modeling of small sample distributions with generalized Gaussian density in a maximum likelihood framework

机译:最大似然框架下具有广义高斯密度的小样本分布建模

获取原文
获取原文并翻译 | 示例

摘要

The modeling of sample distributions with generalized Gaussian density (GGD) has received a lot of interest. Most papers justify the existence of GGD parameters through the asymptotic behavior of some mathematical expressions (i.e., the sample is supposed to be large). In this paper, we show that the computation of GGD parameters on small samples is not the same as on larger ones. In a maximum likelihood framework, we exhibit a necessary and sufficient condition for the existence of the parameters. We derive an algorithm to compute them and then compare it to some existing methods on random images of different sizes.
机译:具有广义高斯密度(GGD)的样本分布模型已经引起了很多兴趣。大多数论文通过一些数学表达式的渐近行为证明GGD参数的存在(即样本应该很大)。在本文中,我们表明,小样本的GGD参数计算与大样本的GGD参数计算不同。在最大似然框架中,我们展示了参数存在的必要条件和充分条件。我们推导了一种算法来计算它们,然后将其与不同大小的随机图像上的一些现有方法进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号