首页> 外文期刊>IEEE Transactions on Image Processing >Bayesian wavelet-based image deconvolution: a GEM algorithm exploiting a class of heavy-tailed priors
【24h】

Bayesian wavelet-based image deconvolution: a GEM algorithm exploiting a class of heavy-tailed priors

机译:基于贝叶斯小波的图像反卷积:利用一类重尾先验的GEM算法

获取原文
获取原文并翻译 | 示例

摘要

Image deconvolution is formulated in the wavelet domain under the Bayesian framework. The well-known sparsity of the wavelet coefficients of real-world images is modeled by heavy-tailed priors belonging to the Gaussian scale mixture (GSM) class; i.e., priors given by a linear (finite of infinite) combination of Gaussian densities. This class includes, among others, the generalized Gaussian, the Jeffreys , and the Gaussian mixture priors. Necessary and sufficient conditions are stated under which the prior induced by a thresholding/shrinking denoising rule is a GSM. This result is then used to show that the prior induced by the "nonnegative garrote" thresholding/shrinking rule, herein termed the garrote prior, is a GSM. To compute the maximum a posteriori estimate, we propose a new generalized expectation maximization (GEM) algorithm, where the missing variables are the scale factors of the GSM densities. The maximization step of the underlying expectation maximization algorithm is replaced with a linear stationary second-order iterative method. The result is a GEM algorithm of O(NlogN) computational complexity. In a series of benchmark tests, the proposed approach outperforms or performs similarly to state-of-the art methods, demanding comparable (in some cases, much less) computational complexity.
机译:图像反卷积是在贝叶斯框架下的小波域中制定的。真实世界图像的小波系数的稀疏性是通过高斯尺度混合(GSM)类的重尾先验建模的。即先验是由高斯密度的线性(无限有限)组合给出的。此类尤其包括广义高斯,杰弗里斯和高斯混合先验。陈述了必要和充分的条件,在该条件下,由阈值/收缩去噪规则引起的先验是GSM。然后,该结果用于显示由“否定刺青”阈值/收缩规则诱发的先验(在本文中称为“刺青先验”)是GSM。为了计算最大后验估计,我们提出了一种新的广义期望最大化(GEM)算法,其中缺失的变量是GSM密度的比例因子。基本期望最大化算法的最大化步骤被线性平稳二阶迭代方法代替。结果是计算复杂度为O(NlogN)的GEM算法。在一系列基准测试中,所提出的方法的性能优于或类似于最先进的方法,要求可比(在某些情况下,少得多)的计算复杂性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号