首页> 外文期刊>IEEE Transactions on Image Processing >Phase Unwrapping via Graph Cuts
【24h】

Phase Unwrapping via Graph Cuts

机译:通过图形切割进行相位展开

获取原文
获取原文并翻译 | 示例

摘要

Phase unwrapping is the inference of absolute phase from modulo-2pi phase. This paper introduces a new energy minimization framework for phase unwrapping. The considered objective functions are first-order Markov random fields. We provide an exact energy minimization algorithm, whenever the corresponding clique potentials are convex, namely for the phase unwrapping classical Lp norm, with pges1. Its complexity is KT(n,3n), where K is the length of the absolute phase domain measured in 2pi units and T(n,m) is the complexity of a max-flow computation in a graph with n nodes and m edges. For nonconvex clique potentials, often used owing to their discontinuity preserving ability, we face an NP-hard problem for which we devise an approximate solution. Both algorithms solve integer optimization problems by computing a sequence of binary optimizations, each one solved by graph cut techniques. Accordingly, we name the two algorithms PUMA, for phase unwrapping max-flow/min-cut. A set of experimental results illustrates the effectiveness of the proposed approach and its competitiveness in comparison with state-of-the-art phase unwrapping algorithms
机译:相位解缠是从模2pi相位推断出绝对相位。本文介绍了一种用于相位展开的新的能量最小化框架。所考虑的目标函数是一阶马尔可夫随机场。每当相应的集团势是凸的时,即对于使用pges1的相位展开经典Lp范数的相位,我们都会提供一种精确的能量最小化算法。它的复杂度是KT(n,3n),其中K是以2pi为单位测量的绝对相位域的长度,而T(n,m)是在n个节点和m个边的图中最大流计算的复杂度。对于由于其不连续性保持能力而经常使用的非凸群势,我们面临一个NP难题,我们设计了一个近似解。两种算法都通过计算一系列二进制优化来解决整数优化问题,每种优化都通过图割技术来解决。因此,我们将两种算法命名为PUMA,用于最大流量/最小切割的相位展开。一组实验结果表明,与最新的相位展开算法相比,该方法的有效性及其竞争力

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号