首页> 外文期刊>IEEE Transactions on Image Processing >Combining Monte Carlo and Mean-Field-Like Methods for Inference in Hidden Markov Random Fields
【24h】

Combining Monte Carlo and Mean-Field-Like Methods for Inference in Hidden Markov Random Fields

机译:组合蒙特卡罗方法和类似均值场的方法进行隐马尔可夫随机场的推理

获取原文
获取原文并翻译 | 示例

摘要

Issues involving missing data are typical settings where exact inference is not tractable as soon as nontrivial interactions occur between the missing variables. Approximations are required, and most of them are based either on simulation methods or on deterministic variational methods. While variational methods provide fast and reasonable approximate estimates in many scenarios, simulation methods offer more consideration of important theoretical issues such as accuracy of the approximation and convergence of the algorithms but at a much higher computational cost. In this work, we propose a new class of algorithms that combine the main features and advantages of both simulation and deterministic methods and consider applications to inference in hidden Markov random fields (HMRFs). These algorithms can be viewed as stochastic perturbations of variational expectation maximization (VEM) algorithms, which are not tractable for HMRF. We focus more specifically on one of these perturbations and we prove their (almost sure) convergence to the same limit set as the limit set of VEM. In addition, experiments on synthetic and real-world images show that the algorithm performance is very close and sometimes better than that of other existing simulation-based and variational EM-like algorithms
机译:涉及丢失数据的问题是典型设置,一旦丢失变量之间发生非平凡的交​​互作用,就无法进行精确推断。需要近似值,并且大多数近似值都是基于模拟方法或确定性变分方法。尽管变分方法在许多情况下提供了快速而合理的近似估计,但是仿真方法提供了对重要理论问题的更多考虑,例如算法的近似精度和收敛性,但计算成本却高得多。在这项工作中,我们提出了一类新的算法,该算法结合了仿真和确定性方法的主要特征和优点,并考虑了隐马尔可夫随机字段(HMRF)的推理应用。这些算法可以看作是变异期望最大化(VEM)算法的随机扰动,对于HMRF而言,它是不易处理的。我们更具体地关注这些扰动之一,并证明它们(几乎可以肯定)收敛到与VEM的极限集相同的极限集。此外,对合成图像和真实世界图像进行的实验表明,该算法的性能非常接近,有时甚至优于其他现有的基于仿真和变分EM的算法

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号