首页> 外文期刊>IEEE Transactions on Image Processing >The Regularized Iteratively Reweighted MAD Method for Change Detection in Multi- and Hyperspectral Data
【24h】

The Regularized Iteratively Reweighted MAD Method for Change Detection in Multi- and Hyperspectral Data

机译:用于多光谱和高光谱数据变化检测的正则迭代加权MAD方法

获取原文
获取原文并翻译 | 示例

摘要

This paper describes new extensions to the previously published multivariate alteration detection (MAD) method for change detection in bi-temporal, multi- and hypervariate data such as remote sensing imagery. Much like boosting methods often applied in data mining work, the iteratively reweighted (IR) MAD method in a series of iterations places increasing focus on "difficult" observations, here observations whose change status over time is uncertain. The MAD method is based on the established technique of canonical correlation analysis: for the multivariate data acquired at two points in time and covering the same geographical region, we calculate the canonical variates and subtract them from each other. These orthogonal differences contain maximum information on joint change in all variables (spectral bands). The change detected in this fashion is invariant to separate linear (affine) transformations in the originally measured variables at the two points in time, such as 1) changes in gain and offset in the measuring device used to acquire the data, 2) data normalization or calibration schemes that are linear (affine) in the gray values of the original variables, or 3) orthogonal or other affine transformations, such as principal component (PC) or maximum autocorrelation factor (MAF) transformations. The IR-MAD method first calculates ordinary canonical and original MAD variates. In the following iterations we apply different weights to the observations, large weights being assigned to observations that show little change, i.e., for which the sum of squared, standardized MAD variates is small, and small weights being assigned to observations for which the sum is large. Like the original MAD method, the iterative extension is invariant to linear (affine) transformations of the original variables. To stabilize solutions to the (IR-)MAD problem, some form of regularization may be needed. This is especially useful for work on hyperspectral data. This paper describes or-dinary two-set canonical correlation analysis, the MAD transformation, the iterative extension, and three regularization schemes. A simple case with real Landsat Thematic Mapper (TM) data at one point in time and (partly) constructed data at the other point in time that demonstrates the superiority of the iterative scheme over the original MAD method is shown. Also, examples with SPOT High Resolution Visible data from an agricultural region in Kenya, and hyperspectral airborne HyMap data from a small rural area in southeastern Germany are given. The latter case demonstrates the need for regularization
机译:本文介绍了对先前发布的多变量变更检测(MAD)方法的新扩展,该方法可用于双时,多变量和超变量数据(例如遥感影像)中的变化检测。就像经常在数据挖掘工作中使用的增强方法一样,迭代重加权(IR)MAD方法在一系列迭代中也越来越关注“困难”的观测,这里的观测随着时间的变化状态是不确定的。 MAD方法基于已建立的典范相关性分析技术:对于在两个时间点采集并覆盖相同地理区域的多元数据,我们计算典范变量并将其相互减去。这些正交差异包含有关所有变量(光谱带)的联合变化的最大信息。以这种方式检测到的变化是不变的,以便在两个时间点将原始测量变量中的线性(仿射)变换分开,例如1)用于获取数据的测量设备中增益和偏移的变化,2)数据归一化或在原始变量的灰度值中呈线性(仿射)的校准方案,或3)正交或其他仿射变换,例如主成分(PC)或最大自相关因子(MAF)变换。 IR-MAD方法首先计算普通的规范变量和原始的MAD变量。在以下迭代中,我们对观察值应用不同的权重,将较大的权重分配给变化不大的观察值,即,对于这些值,平方的标准化MAD变量之和很小,而将较小的权重分配给观测值,即总和为大。像原始的MAD方法一样,迭代扩展对于原始变量的线性(仿射)变换是不变的。为了稳定(IR-)MAD问题的解决方案,可能需要某种形式的正则化。这对于处理高光谱数据特别有用。本文介绍了普通的两集规范相关分析,MAD变换,迭代扩展和三种正则化方案。给出了一个简单的案例,该案例在一个时间点具有真实的Landsat Thematic Mapper(TM)数据,而在另一时间点具有(部分)构造的数据,证明了迭代方案优于原始MAD方法的优越性。此外,还提供了一些示例,这些示例包括来自肯尼亚农业地区的SPOT高分辨率可见数据和来自德国东南部一个农村地区的高光谱空中HyMap数据。后一种情况表明需要进行正则化

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号