首页> 外文期刊>IEEE Transactions on Image Processing >A New Approach to Image Copy Detection Based on Extended Feature Sets
【24h】

A New Approach to Image Copy Detection Based on Extended Feature Sets

机译:基于扩展特征集的图像复制检测新方法

获取原文
获取原文并翻译 | 示例

摘要

Conventional image copy detection research concentrates on finding features that are robust enough to resist various kinds of image attacks. However, finding a globally effective feature is difficult and, in many cases, domain dependent. Instead of simply extracting features from copyrighted images directly, we propose a new framework called the extended feature set for detecting copies of images. In our approach, virtual prior attacks are applied to copyrighted images to generate novel features, which serve as training data. The copy-detection problem can be solved by learning classifiers from the training data, thus, generated. Our approach can be integrated into existing copy detectors to further improve their performance. Experiment results demonstrate that the proposed approach can substantially enhance the accuracy of copy detection.
机译:常规的图像复制检测研究着重于找到足够强大以抵抗各种图像攻击的功能。但是,要找到全局有效的功能是困难的,并且在许多情况下,取决于领域。我们提出了一个新的框架,称为扩展特征集,以检测图像的副本,而不是直接从受版权保护的图像中提取特征。在我们的方法中,将虚拟先验攻击应用于受版权保护的图像,以生成新颖的功能,将其用作训练数据。可以通过从生成的训练数据中学习分类器来解决复制检测问题。我们的方法可以集成到现有的复印检测器中,以进一步提高其性能。实验结果表明,该方法可以大大提高拷贝检测的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号