首页> 外文期刊>IEEE Transactions on Image Processing >Locally Linear Regression for Pose-Invariant Face Recognition
【24h】

Locally Linear Regression for Pose-Invariant Face Recognition

机译:局部线性回归用于姿态不变的人脸识别

获取原文
获取原文并翻译 | 示例

摘要

The variation of facial appearance due to the viewpoint (/pose) degrades face recognition systems considerably, which is one of the bottlenecks in face recognition. One of the possible solutions is generating virtual frontal view from any given nonfrontal view to obtain a virtual gallery/probe face. Following this idea, this paper proposes a simple, but efficient, novel locally linear regression (LLR) method, which generates the virtual frontal view from a given nonfrontal face image. We first justify the basic assumption of the paper that there exists an approximate linear mapping between a nonfrontal face image and its frontal counterpart. Then, by formulating the estimation of the linear mapping as a prediction problem, we present the regression-based solution, i.e., globally linear regression. To improve the prediction accuracy in the case of coarse alignment, LLR is further proposed. In LLR, we first perform dense sampling in the nonfrontal face image to obtain many overlapped local patches. Then, the linear regression technique is applied to each small patch for the prediction of its virtual frontal patch. Through the combination of all these patches, the virtual frontal view is generated. The experimental results on the CMU PIE database show distinct advantage of the proposed method over Eigen light-field method.
机译:由于视点(/姿势)引起的面部外观变化大大降低了面部识别系统,这是面部识别的瓶颈之一。可能的解决方案之一是从任何给定的非正面视图生成虚拟正面视图,以获得虚拟画廊/探针脸。遵循此想法,本文提出了一种简单但有效的新颖的局部线性回归(LLR)方法,该方法可从给定的非正面人脸图像生成虚拟正面视图。我们首先证明本文的基本假设是合理的,即非正面人脸图像与其正面对应物之间存在近似线性映射。然后,通过将线性映射的估计公式化为预测问题,我们提出了基于回归的解决方案,即全局线性回归。为了在粗对准的情况下提高预测精度,进一步提出了LLR。在LLR中,我们首先在非正面人脸图像中执行密集采样,以获得许多重叠的局部斑块。然后,将线性回归技术应用于每个小斑块,以预测其虚拟额叶斑块。通过所有这些补丁的组合,可以生成虚拟正面视图。在CMU PIE数据库上的实验结果表明,与本征光场方法相比,该方法具有明显的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号