首页> 外文期刊>IEEE Transactions on Image Processing >Iterative Voting for Inference of Structural Saliency and Characterization of Subcellular Events
【24h】

Iterative Voting for Inference of Structural Saliency and Characterization of Subcellular Events

机译:迭代投票以推断结构显着性和亚细胞事件的特征

获取原文
获取原文并翻译 | 示例

摘要

Saliency is an important perceptual cue that occurs at different levels of resolution. Important attributes of saliency are symmetry, continuity, and closure. Detection of these attributes is often hindered by noise, variation in scale, and incomplete information. This paper introduces the iterative voting method, which uses oriented kernels for inferring saliency as it relates to symmetry. A unique aspect of the technique is the kernel topography, which is refined and reoriented iteratively. The technique can cluster and group nonconvex perceptual circular symmetries along the radial line of an object's shape. It has an excellent noise immunity and is shown to be tolerant to perturbation in scale. The application of this technique to images obtained through various modes of microscopy is demonstrated. Furthermore, as a case example, the method has been applied to quantify kinetics of nuclear foci formation that are formed by phosphorylation of histone gammaH2AX following ionizing radiation. Iterative voting has been implemented in both 2-D and 3-D for multi image analysis
机译:显着性是发生在不同分辨率级别上的重要感知线索。显着性的重要属性是对称性,连续性和封闭性。这些属性的检测通常会受到噪声,规模变化和信息不完整的阻碍。本文介绍了一种迭代投票方法,该方法使用面向内核来推断与对称性相关的显着性。该技术的一个独特方面是内核拓扑,它可以迭代地改进和重新定向。该技术可以沿对象形状的径向线对非凸感知圆形对称性进行聚类和分组。它具有出色的抗噪能力,并且显示出可以容忍规模扰动。演示了该技术在通过各种显微镜模式获得的图像上的应用。此外,作为一个实例,该方法已应用于定量电离辐射后组蛋白gammaH2AX磷酸化形成的核灶形成动力学。在2-D和3-D中都实现了迭代投票,以进行多图像分析

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号