首页> 外文期刊>IEEE Transactions on Image Processing >Binary Partition Tree Analysis Based on Region Evolution and Its Application to Tree Simplification
【24h】

Binary Partition Tree Analysis Based on Region Evolution and Its Application to Tree Simplification

机译:基于区域演化的二叉树分析及其在树简化中的应用

获取原文
获取原文并翻译 | 示例

摘要

Pyramid image representations via tree structures are recognized methods for region-based image analysis. Binary partition trees can be applied which document the merging process with small details found at the bottom levels and larger ones close to the root. Hindsight of the merging process is stored within the tree structure and provides the change histories of an image property from the leaf to the root node. In this work, the change histories are modelled by evolvement functions and their second order statistics are analyzed by using a knee function. Knee values show the reluctancy of each merge. We have systematically formulated these findings to provide a novel framework for binary partition tree analysis, where tree simplification is demonstrated. Based on an evolvement function, for each upward path in a tree, the tree node associated with the first reluctant merge is considered as a pruning candidate. The result is a simplified version providing a reduced solution space and still complying with the definition of a binary tree. The experiments show that image details are preserved whilst the number of nodes is dramatically reduced. An image filtering tool also results which preserves object boundaries and has applications for segmentation
机译:经由树结构的金字塔图像表示法是用于基于区域的图像分析的公认方法。可以应用二进制分区树,该文档记录合并过程,并在底层显示较小的细节,而在根目录附近则显示较大的细节。合并过程的后视存储在树结构中,并提供从叶子到根节点的图像属性的更改历史记录。在这项工作中,用演化函数对变化历史进行建模,并使用拐点函数分析其二阶统计量。拐点值表示每次合并的不愿意。我们已经系统地总结了这些发现,从而为二元分区树分析提供了一种新颖的框架,并在其中证明了树的简化。基于演化函数,对于树中的每个向上路径,与第一勉强合并相关联的树节点被视为修剪候选对象。结果是简化版本,提供了减少的解决方案空间,并且仍然符合二叉树的定义。实验表明,保留了图像细节,同时大大减少了节点数量。还会产生一个图像过滤工具,该工具可以保留对象边界并可以进行分割

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号